Skip to main content
Genetics logoLink to Genetics
. 1991 May;128(1):163–173. doi: 10.1093/genetics/128.1.163

Ac Induces Homologous Recombination at the Maize P Locus

P Athma 1, T Peterson 1
PMCID: PMC1204445  PMID: 1648001

Abstract

The maize P gene conditions red phlobaphene pigmentation to the pericarp and cob. Starting from two unstable P alleles which carry insertions of the transposable element Ac, we have derived 51 P null alleles; 47 of the 51 null alleles have a 17-kb deletion which removes the 4.5-kb Ac element and 12.5 kb of P sequences flanking both sides of Ac. The deletion endpoints lie within two 5.2-kb homologous direct repeats which flank the P gene. A P allele which contains the direct repeats, but does not have an Ac insertion between the direct repeats, shows very little sporophytic or gametophytic instability. The apparent frequency of sporophytic mutations was not increased when Ac was introduced in trans. Southern analysis of DNA prepared from the pericarp tissue demonstrates that the deletions can occur premeiotically, in the somatic cells during development of the pericarp. Evidence is presented that the deletions occurred by homologous recombination between the two direct repeats, and that the presence of an Ac element at the P locus is associated with the recombination/deletion. These results add another aspect to the spectrum of activities of Ac: the destabilization of flanking direct repeat sequences.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brink R A. A Stable Somatic Mutation to Colorless from Variegated Pericarp in Maize. Genetics. 1958 May;43(3):435–447. doi: 10.1093/genetics/43.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brink R A, Nilan R A. The Relation between Light Variegated and Medium Variegated Pericarp in Maize. Genetics. 1952 Sep;37(5):519–544. doi: 10.1093/genetics/37.5.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Busseau I., Pelisson A., Bucheton A. I elements of Drosophila melanogaster generate specific chromosomal rearrangements during transposition. Mol Gen Genet. 1989 Aug;218(2):222–228. doi: 10.1007/BF00331272. [DOI] [PubMed] [Google Scholar]
  4. Calos M. P., Miller J. H. Molecular consequences of deletion formation mediated by the transposon Tn9. Nature. 1980 May 1;285(5759):38–41. doi: 10.1038/285038a0. [DOI] [PubMed] [Google Scholar]
  5. Das O. P., Levi-Minzi S., Koury M., Benner M., Messing J. A somatic gene rearrangement contributing to genetic diversity in maize. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7809–7813. doi: 10.1073/pnas.87.20.7809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis P. S., Shen M. W., Judd B. H. Asymmetrical pairings of transposons in and proximal to the white locus of Drosophila account for four classes of regularly occurring exchange products. Proc Natl Acad Sci U S A. 1987 Jan;84(1):174–178. doi: 10.1073/pnas.84.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dooner H. K., English J., Ralston E. J. The frequency of transposition of the maize element Activator is not affected by an adjacent deletion. Mol Gen Genet. 1988 Mar;211(3):485–491. doi: 10.1007/BF00425705. [DOI] [PubMed] [Google Scholar]
  8. Dooner H. K., Kermicle J. L. The Transposable Element Ds Affects the Pattern of Intragenic Recombination at the bz and R Loci in Maize. Genetics. 1986 May;113(1):135–143. doi: 10.1093/genetics/113.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fradkin C M, Brink R A. Crossing over in Maize in the Presence of the Transposable Factors Activator and Modulator. Genetics. 1956 Nov;41(6):901–906. doi: 10.1093/genetics/41.6.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greenblatt I. M. A chromosome replication pattern deduced from pericarp phenotypes resulting from movements of the transposable element, modulator, in maize. Genetics. 1984 Oct;108(2):471–485. doi: 10.1093/genetics/108.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holt I. J., Harding A. E., Morgan-Hughes J. A. Deletions of muscle mitochondrial DNA in mitochondrial myopathies: sequence analysis and possible mechanisms. Nucleic Acids Res. 1989 Jun 26;17(12):4465–4469. doi: 10.1093/nar/17.12.4465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kermicle J. L. Probing the component structure of a maize gene with transposable elements. Science. 1980 Jun 27;208(4451):1457–1459. doi: 10.1126/science.208.4451.1457. [DOI] [PubMed] [Google Scholar]
  13. Lechelt C., Peterson T., Laird A., Chen J., Dellaporta S. L., Dennis E., Peacock W. J., Starlinger P. Isolation and molecular analysis of the maize P locus. Mol Gen Genet. 1989 Oct;219(1-2):225–234. doi: 10.1007/BF00261181. [DOI] [PubMed] [Google Scholar]
  14. Lister C., Martin C. Molecular analysis of a transposon-induced deletion of the nivea locus in Antirrhinum majus. Genetics. 1989 Oct;123(2):417–425. doi: 10.1093/genetics/123.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Martin C., Mackay S., Carpenter R. Large-scale chromosomal restructuring is induced by the transposable element tam3 at the nivea locus of antirrhinum majus. Genetics. 1988 May;119(1):171–184. doi: 10.1093/genetics/119.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McClintock B. The Fusion of Broken Ends of Chromosomes Following Nuclear Fusion. Proc Natl Acad Sci U S A. 1942 Nov;28(11):458–463. doi: 10.1073/pnas.28.11.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mita S., Rizzuto R., Moraes C. T., Shanske S., Arnaudo E., Fabrizi G. M., Koga Y., DiMauro S., Schon E. A. Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA. Nucleic Acids Res. 1990 Feb 11;18(3):561–567. doi: 10.1093/nar/18.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Orr-Weaver T. L., Szostak J. W., Rothstein R. J. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6354–6358. doi: 10.1073/pnas.78.10.6354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Orton E. R. Frequency of reconstitution of the variegated pericarp allele in maize. Genetics. 1966 Jan;53(1):17–25. doi: 10.1093/genetics/53.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schiestl R. H., Igarashi S., Hastings P. J. Analysis of the mechanism for reversion of a disrupted gene. Genetics. 1988 Jun;119(2):237–247. doi: 10.1093/genetics/119.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schwartz D. Tissue-specific regulation of gene function: Presetting and erasure. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5991–5992. doi: 10.1073/pnas.79.19.5991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shure M., Wessler S., Fedoroff N. Molecular identification and isolation of the Waxy locus in maize. Cell. 1983 Nov;35(1):225–233. doi: 10.1016/0092-8674(83)90225-8. [DOI] [PubMed] [Google Scholar]
  23. Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
  24. Taylor L. P., Walbot V. A deletion adjacent to the maize transposable element Mu-1 accompanies loss of Adh1 expression. EMBO J. 1985 Apr;4(4):869–876. doi: 10.1002/j.1460-2075.1985.tb03712.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wessler S., Tarpley A., Purugganan M., Spell M., Okagaki R. Filler DNA is associated with spontaneous deletions in maize. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8731–8735. doi: 10.1073/pnas.87.22.8731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Williamson V. M. Transposable elements in yeast. Int Rev Cytol. 1983;83:1–25. doi: 10.1016/s0074-7696(08)61684-8. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES