Skip to main content
Genetics logoLink to Genetics
. 1991 Jun;128(2):303–310. doi: 10.1093/genetics/128.2.303

Introduction of the Transposable Element Mariner into the Germline of Drosophila Melanogaster

D Garza 1, M Medhora 1, A Koga 1, D L Hartl 1
PMCID: PMC1204468  PMID: 1649067

Abstract

A chimeric white gene (w(pch)) and other constructs containing the transposable element mariner from Drosophila mauritiana were introduced into the germline of Drosophila melanogaster using transformation mediated by the P element. In the absence of other mariner elements, the w(pch) allele is genetically stable in both germ cells and somatic cells, indicating that the peach element (i.e., the particular copy of mariner inserted in the w(pch) allele) is inactive. However, in the presence of the active element Mos1, the w(pch) allele reverts, owing to excision of the peach element, yielding eye-color mosaics and a high rate of germline reversion. In strains containing Mos1 virtually every fly is an eye-color mosaic, and the rate of w(pch) germline reversion ranges from 10 to 25%, depending on temperature. The overall rates of mariner excision and transposition are approximately sixfold greater than the rates in comparable strains of Drosophila simulans. The activity of the Mos1 element is markedly affected by position effects at the site of Mos1 insertion. In low level mosaic lines, dosage effects of Mos1 are apparent in the heavier level of eye-color mosaicism in Mos1 homozygotes than in heterozygotes. However, saturation occurs in high level mosaic lines, and then dosage effects are not observed. A pBluescribe M13+ plasmid containing Mos1 was injected into the pole plasm of D. melanogaster embryos, and the Mos1 element spontaneously integrated into the germline at high efficiency. These transformed strains of D. melanogaster presently contain numerous copies of mariner and may be useful in transposon tagging and other applications.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bingham P. M., Levis R., Rubin G. M. Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method. Cell. 1981 Sep;25(3):693–704. doi: 10.1016/0092-8674(81)90176-8. [DOI] [PubMed] [Google Scholar]
  2. Bryan G. J., Hartl D. L. Maternally inherited transposon excision in Drosophila simulans. Science. 1988 Apr 8;240(4849):215–217. doi: 10.1126/science.2832948. [DOI] [PubMed] [Google Scholar]
  3. Bryan G. J., Jacobson J. W., Hartl D. L. Heritable somatic excision of a Drosophila transposon. Science. 1987 Mar 27;235(4796):1636–1638. doi: 10.1126/science.3029874. [DOI] [PubMed] [Google Scholar]
  4. Bryan G., Garza D., Hartl D. Insertion and excision of the transposable element mariner in Drosophila. Genetics. 1990 May;125(1):103–114. doi: 10.1093/genetics/125.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Capy P., Chakrani F., Lemeunier F., Hartl D. L., David J. R. Active mariner transposable elements are widespread in natural populations of Drosophila simulans. Proc Biol Sci. 1990 Oct 22;242(1303):57–60. doi: 10.1098/rspb.1990.0103. [DOI] [PubMed] [Google Scholar]
  6. Daniels S. B., Chovnick A., Kidwell M. G. Hybrid dysgenesis in Drosophila simulans lines transformed with autonomous P elements. Genetics. 1989 Feb;121(2):281–291. doi: 10.1093/genetics/121.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Daniels S. B., Strausbaugh L. D., Armstrong R. A. Molecular analysis of P element behavior in Drosophila simulans transformants. Mol Gen Genet. 1985;200(2):258–265. doi: 10.1007/BF00425433. [DOI] [PubMed] [Google Scholar]
  8. Dowsett A. P., Young M. W. Differing levels of dispersed repetitive DNA among closely related species of Drosophila. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4570–4574. doi: 10.1073/pnas.79.15.4570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haymer D. S., Marsh J. L. Germ line and somatic instability of a white mutation in Drosophila mauritiana due to a transposable genetic element. Dev Genet. 1986;6(4):281–291. doi: 10.1002/dvg.1020060406. [DOI] [PubMed] [Google Scholar]
  10. Hazelrigg T., Levis R., Rubin G. M. Transformation of white locus DNA in drosophila: dosage compensation, zeste interaction, and position effects. Cell. 1984 Feb;36(2):469–481. doi: 10.1016/0092-8674(84)90240-x. [DOI] [PubMed] [Google Scholar]
  11. Jacobson J. W., Hartl D. L. Coupled instability of two X-linked genes in Drosophila mauritiana: germinal and somatic mutability. Genetics. 1985 Sep;111(1):57–65. doi: 10.1093/genetics/111.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Karess R. E., Rubin G. M. Analysis of P transposable element functions in Drosophila. Cell. 1984 Aug;38(1):135–146. doi: 10.1016/0092-8674(84)90534-8. [DOI] [PubMed] [Google Scholar]
  13. Luria S. E., Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943 Nov;28(6):491–511. doi: 10.1093/genetics/28.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maruyama K., Hartl D. L. Evolution of the transposable element mariner in Drosophila species. Genetics. 1991 Jun;128(2):319–329. doi: 10.1093/genetics/128.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. O'Hare K., Rubin G. M. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell. 1983 Aug;34(1):25–35. doi: 10.1016/0092-8674(83)90133-2. [DOI] [PubMed] [Google Scholar]
  16. Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
  17. Rubin G. M., Spradling A. C. Vectors for P element-mediated gene transfer in Drosophila. Nucleic Acids Res. 1983 Sep 24;11(18):6341–6351. doi: 10.1093/nar/11.18.6341. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES