Skip to main content
Genetics logoLink to Genetics
. 1991 Jun;128(2):319–329. doi: 10.1093/genetics/128.2.319

Evolution of the Transposable Element Mariner in Drosophila Species

K Maruyama 1, D L Hartl 1
PMCID: PMC1204470  PMID: 1649069

Abstract

The distribution of the transposable element mariner was examined in the genus Drosophila. Among the eight species comprising the melanogaster species subgroup, the element is present in D. mauritiana, D. simulans, D. sechellia, D. yakuba and D. teissieri, but it is absent in D. melanogaster, D. erecta and D. orena. Multiple copies of mariner were sequenced from each species in which the element occurs. The inferred phylogeny of the elements and the pattern of divergence were examined in order to evaluate whether horizontal transfer among species or stochastic loss could better account for the discontinuous distribution of the element among the species. The data suggest that the element was present in the ancestral species before the melanogaster subgroup diverged and was lost in the lineage leading to D. melanogaster and the lineage leading to D. erecta and D. orena. This inference is consistent with the finding that mariner also occurs in members of several other species subgroups within the overall melanogaster species group, Within the melanogaster species subgroup, the average divergence of mariner copies between species was lower than the coding region of the alcohol dehydrogenase (Adh) gene. However, the divergence of mariner elements within species was as great as that observed for Adh. We conclude that the relative sequence homogeneity of mariner elements within species is more likely a result of rapid amplification of a few ancestral elements than of concerted evolution. The mariner element may also have had unequal mutation rates in different lineages.

Full Text

The Full Text of this article is available as a PDF (4.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black D. M., Jackson M. S., Kidwell M. G., Dover G. A. KP elements repress P-induced hybrid dysgenesis in Drosophila melanogaster. EMBO J. 1987 Dec 20;6(13):4125–4135. doi: 10.1002/j.1460-2075.1987.tb02758.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bodmer M., Ashburner M. Conservation and change in the DNA sequences coding for alcohol dehydrogenase in sibling species of Drosophila. 1984 May 31-Jun 6Nature. 309(5967):425–430. doi: 10.1038/309425a0. [DOI] [PubMed] [Google Scholar]
  3. Capy P., Chakrani F., Lemeunier F., Hartl D. L., David J. R. Active mariner transposable elements are widespread in natural populations of Drosophila simulans. Proc Biol Sci. 1990 Oct 22;242(1303):57–60. doi: 10.1098/rspb.1990.0103. [DOI] [PubMed] [Google Scholar]
  4. Daniels S. B., Peterson K. R., Strausbaugh L. D., Kidwell M. G., Chovnick A. Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics. 1990 Feb;124(2):339–355. doi: 10.1093/genetics/124.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Daniels S. B., Strausbaugh L. D., Ehrman L., Armstrong R. Sequences homologous to P elements occur in Drosophila paulistorum. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6794–6797. doi: 10.1073/pnas.81.21.6794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daniels S. B., Strausbaugh L. D. The distribution of P-element sequences in Drosophila: the willistoni and saltans species groups. J Mol Evol. 1986;23(2):138–148. doi: 10.1007/BF02099908. [DOI] [PubMed] [Google Scholar]
  7. Dowsett A. P., Young M. W. Differing levels of dispersed repetitive DNA among closely related species of Drosophila. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4570–4574. doi: 10.1073/pnas.79.15.4570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  9. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  10. Helms C., Graham M. Y., Dutchik J. E., Olson M. V. A new method for purifying lambda DNA from phage lysates. DNA. 1985 Feb;4(1):39–49. doi: 10.1089/dna.1985.4.39. [DOI] [PubMed] [Google Scholar]
  11. Jacobson J. W., Medhora M. M., Hartl D. L. Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8684–8688. doi: 10.1073/pnas.83.22.8684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kidwell M. G. Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1655–1659. doi: 10.1073/pnas.80.6.1655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lis J. T., Simon J. A., Sutton C. A. New heat shock puffs and beta-galactosidase activity resulting from transformation of Drosophila with an hsp70-lacZ hybrid gene. Cell. 1983 Dec;35(2 Pt 1):403–410. doi: 10.1016/0092-8674(83)90173-3. [DOI] [PubMed] [Google Scholar]
  14. Martin G., Wiernasz D., Schedl P. Evolution of Drosophila repetitive-dispersed DNA. J Mol Evol. 1983;19(3-4):203–213. doi: 10.1007/BF02099967. [DOI] [PubMed] [Google Scholar]
  15. Medhora M. M., MacPeek A. H., Hartl D. L. Excision of the Drosophila transposable element mariner: identification and characterization of the Mos factor. EMBO J. 1988 Jul;7(7):2185–2189. doi: 10.1002/j.1460-2075.1988.tb03057.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Monnerot M., Solignac M., Wolstenholme D. R. Discrepancy in divergence of the mitochondrial and nuclear genomes of Drosophila teissieri and Drosophila yakuba. J Mol Evol. 1990 Jun;30(6):500–508. doi: 10.1007/BF02101105. [DOI] [PubMed] [Google Scholar]
  17. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Seperack P., Slatkin M., Arnheim N. Linkage disequilibrium in human ribosomal genes: implications for multigene family evolution. Genetics. 1988 Aug;119(4):943–949. doi: 10.1093/genetics/119.4.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sharp P. M., Li W. H. On the rate of DNA sequence evolution in Drosophila. J Mol Evol. 1989 May;28(5):398–402. doi: 10.1007/BF02603075. [DOI] [PubMed] [Google Scholar]
  20. Simonelig M., Bazin C., Pelisson A., Bucheton A. Transposable and nontransposable elements similar to the I factor involved in inducer-reactive (IR) hybrid dysgenesis in Drosophila melanogaster coexist in various Drosophila species. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1141–1145. doi: 10.1073/pnas.85.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  22. Stacey S. N., Lansman R. A., Brock H. W., Grigliatti T. A. Distribution and conservation of mobile elements in the genus Drosophila. Mol Biol Evol. 1986 Nov;3(6):522–534. doi: 10.1093/oxfordjournals.molbev.a040413. [DOI] [PubMed] [Google Scholar]
  23. Stephens J. C., Nei M. Phylogenetic analysis of polymorphic DNA sequences at the Adh locus in Drosophila melanogaster and its sibling species. J Mol Evol. 1985;22(4):289–300. doi: 10.1007/BF02115684. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES