Skip to main content
Genetics logoLink to Genetics
. 1991 Jun;128(2):393–403. doi: 10.1093/genetics/128.2.393

Putative Origin and Function of the Intergenic Region between Coi and Coii of Apis Mellifera L. Mitochondrial DNA

J M Cornuet 1, L Garnery 1, M Solignac 1
PMCID: PMC1204476  PMID: 1649072

Abstract

The mitochondrial genome of honeybees is characterized by the presence of a long intergenic sequence located between the COI and COII genes. In addition, the length of this sequence varies between and within subspecies. Four length categories (200, 250, 450 and 650 bp) have been found in 63 sampled colonies. Analysis of the sequence of the largest type reveals the existence of two units: P (54 bp, 100% A + T) and Q (196 bp, 93.4% A + T). The lengths encountered in the sample are explained by the following combinations: Q, PQ, PQQ and PQQQ. According to similarities in primary and secondary structures, the sequence Q has been divided into three parts : Q(1) (similar to the 3' end of the COI gene), Q(2) (similar to the neighboring tRNA(leu) gene) and Q(3) (highly similar to the P sequence). These relationships led us to hypothesize that these sequences, which do not have any counterpart in Drosophila yakuba mitochondrial DNA (mtDNA), arose by tandem duplication. The usual location of length variation in mtDNA control regions prompted us to examine the hypothesis that this COI-COII intergenic region might contain an origin of replication. High A + T content, stability profile, hairpin and cloverleaf putative secondary structures are all in favor of this hypothesis.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attardi G. Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol. 1985;93:93–145. doi: 10.1016/s0074-7696(08)61373-x. [DOI] [PubMed] [Google Scholar]
  2. Boyce T. M., Zwick M. E., Aquadro C. F. Mitochondrial DNA in the bark weevils: size, structure and heteroplasmy. Genetics. 1989 Dec;123(4):825–836. doi: 10.1093/genetics/123.4.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown G. G., Gadaleta G., Pepe G., Saccone C., Sbisà E. Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. J Mol Biol. 1986 Dec 5;192(3):503–511. doi: 10.1016/0022-2836(86)90272-x. [DOI] [PubMed] [Google Scholar]
  4. Buroker N. E., Brown J. R., Gilbert T. A., O'Hara P. J., Beckenbach A. T., Thomas W. K., Smith M. J. Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics. 1990 Jan;124(1):157–163. doi: 10.1093/genetics/124.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cantatore P., Roberti M., Rainaldi G., Saccone C., Gadaleta M. N. Clustering of tRNA genes in Paracentrotus lividus mitochondrial DNA. Curr Genet. 1988;13(1):91–96. doi: 10.1007/BF00365762. [DOI] [PubMed] [Google Scholar]
  6. Chang D. D., Hauswirth W. W., Clayton D. A. Replication priming and transcription initiate from precisely the same site in mouse mitochondrial DNA. EMBO J. 1985 Jun;4(6):1559–1567. doi: 10.1002/j.1460-2075.1985.tb03817.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clary D. O., Wolstenholme D. R. Drosophila mitochondrial DNA: conserved sequences in the A + T-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA. J Mol Evol. 1987;25(2):116–125. doi: 10.1007/BF02101753. [DOI] [PubMed] [Google Scholar]
  8. Clary D. O., Wolstenholme D. R. The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol. 1985;22(3):252–271. doi: 10.1007/BF02099755. [DOI] [PubMed] [Google Scholar]
  9. Dessen P., Fondrat C., Valencien C., Mugnier C. BISANCE: a French service for access to biomolecular sequence databases. Comput Appl Biosci. 1990 Oct;6(4):355–356. doi: 10.1093/bioinformatics/6.4.355. [DOI] [PubMed] [Google Scholar]
  10. Gabarro-Arpa J., Michel F. The hierarchical approach to the DNA stability problem. I. Patterns in non-equilibrium denaturation and renaturation. Biochimie. 1982 Feb;64(2):99–112. doi: 10.1016/s0300-9084(82)80412-4. [DOI] [PubMed] [Google Scholar]
  11. Goddard J. M., Wolstenholme D. R. Origin and direction of replication in mitochondrial DNA molecules from the genus Drosophila. Nucleic Acids Res. 1980 Feb 25;8(4):741–757. [PMC free article] [PubMed] [Google Scholar]
  12. Gyllensten U. B., Erlich H. A. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7652–7656. doi: 10.1073/pnas.85.20.7652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Higuchi R. G., Ochman H. Production of single-stranded DNA templates by exonuclease digestion following the polymerase chain reaction. Nucleic Acids Res. 1989 Jul 25;17(14):5865–5865. doi: 10.1093/nar/17.14.5865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacobs H. T., Elliott D. J., Math V. B., Farquharson A. Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol. 1988 Jul 20;202(2):185–217. doi: 10.1016/0022-2836(88)90452-4. [DOI] [PubMed] [Google Scholar]
  15. Kocher T. D., Thomas W. K., Meyer A., Edwards S. V., Päbo S., Villablanca F. X., Wilson A. C. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6196–6200. doi: 10.1073/pnas.86.16.6196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kowalski D., Natale D. A., Eddy M. J. Stable DNA unwinding, not "breathing," accounts for single-strand-specific nuclease hypersensitivity of specific A+T-rich sequences. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9464–9468. doi: 10.1073/pnas.85.24.9464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. La Roche J., Snyder M., Cook D. I., Fuller K., Zouros E. Molecular characterization of a repeat element causing large-scale size variation in the mitochondrial DNA of the sea scallop Placopecten magellanicus. Mol Biol Evol. 1990 Jan;7(1):45–64. doi: 10.1093/oxfordjournals.molbev.a040586. [DOI] [PubMed] [Google Scholar]
  18. Levinson G., Gutman G. A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol. 1987 May;4(3):203–221. doi: 10.1093/oxfordjournals.molbev.a040442. [DOI] [PubMed] [Google Scholar]
  19. Michel F., Gabarro-Arpa J., Dujon B. The hierarchical approach to the DNA stability problem. II. Some applications and speculations with yeast mitochondrial DNA as an example. Biochimie. 1982 Feb;64(2):113–126. doi: 10.1016/s0300-9084(82)80413-6. [DOI] [PubMed] [Google Scholar]
  20. Mignotte B., Dunon-Bluteau D., Reiss C., Mounolou J. C. Sequence deduced physical properties in the D-loop region common to five vertebrate mitochondrial DNAs. J Theor Biol. 1987 Jan 7;124(1):57–69. doi: 10.1016/s0022-5193(87)80252-7. [DOI] [PubMed] [Google Scholar]
  21. Mignotte F., Gueride M., Champagne A. M., Mounolou J. C. Direct repeats in the non-coding region of rabbit mitochondrial DNA. Involvement in the generation of intra- and inter-individual heterogeneity. Eur J Biochem. 1990 Dec 12;194(2):561–571. doi: 10.1111/j.1432-1033.1990.tb15653.x. [DOI] [PubMed] [Google Scholar]
  22. Monnerot M., Solignac M., Wolstenholme D. R. Discrepancy in divergence of the mitochondrial and nuclear genomes of Drosophila teissieri and Drosophila yakuba. J Mol Evol. 1990 Jun;30(6):500–508. doi: 10.1007/BF02101105. [DOI] [PubMed] [Google Scholar]
  23. Powers T. O., Platzer E. G., Hyman B. C. Large mitochondrial genome and mitochondrial DNA size polymorphism in the mosquito parasite, Romanomermis culicivorax. Curr Genet. 1986;11(1):71–77. doi: 10.1007/BF00389428. [DOI] [PubMed] [Google Scholar]
  24. Smith D. R., Brown W. M. Polymorphisms in mitochondrial DNA of European and Africanized honeybees (Apis mellifera). Experientia. 1988 Mar 15;44(3):257–260. doi: 10.1007/BF01941730. [DOI] [PubMed] [Google Scholar]
  25. Thomas W. K., Maa J., Wilson A. C. Shifting constraints on tRNA genes during mitochondrial DNA evolution in animals. New Biol. 1989 Oct;1(1):93–100. [PubMed] [Google Scholar]
  26. Tzagoloff A., Myers A. M. Genetics of mitochondrial biogenesis. Annu Rev Biochem. 1986;55:249–285. doi: 10.1146/annurev.bi.55.070186.001341. [DOI] [PubMed] [Google Scholar]
  27. Wallis G. P. Mitochondrial DNA insertion polymorphism and germ line heteroplasmy in the Triturus cristatus complex. Heredity (Edinb) 1987 Apr;58(Pt 2):229–238. doi: 10.1038/hdy.1987.37. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES