Skip to main content
Genetics logoLink to Genetics
. 1991 Jun;128(2):471–486. doi: 10.1093/genetics/128.2.471

Models of Repression of Transposition in P-M Hybrid Dysgenesis by P Cytotype and by Zygotically Encoded Repressor Proteins

JFY Brookfield 1
PMCID: PMC1204483  PMID: 1649073

Abstract

By analytical theory and computer simulation the expected evolutionary dynamics of P transposable element spread in an infinite population are investigated. The analysis is based on the assumption that, unlike transposable elements which move via RNA intermediates, the harmful effects of P elements arise primarily in the act of transposition, and that this causes their evolutionary dynamics to be unusual. It is suggested that a situation of transposition-selection balance will be superceded by the buildup of a cytoplasmically inherited repression or by the elimination of active transposase-encoding elements from the chromosomes, a process which may be accompanied by the evolution of elements which encode proteins which repress transposition.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajioka J. W., Eanes W. F. The accumulation of P-elements on the tip of the X chromosome in populations of Drosophila melanogaster. Genet Res. 1989 Feb;53(1):1–6. doi: 10.1017/s0016672300027798. [DOI] [PubMed] [Google Scholar]
  2. Anxolabéhère D., Kidwell M. G., Periquet G. Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion of Drosophila melanogaster by mobile P elements. Mol Biol Evol. 1988 May;5(3):252–269. doi: 10.1093/oxfordjournals.molbev.a040491. [DOI] [PubMed] [Google Scholar]
  3. Anxolabéhère D., Nouaud D., Périquet G., Tchen P. P-element distribution in Eurasian populations of Drosophila melanogaster: A genetic and molecular analysis. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5418–5422. doi: 10.1073/pnas.82.16.5418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker B., Schell J., Lörz H., Fedoroff N. Transposition of the maize controlling element "Activator" in tobacco. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4844–4848. doi: 10.1073/pnas.83.13.4844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Black D. M., Jackson M. S., Kidwell M. G., Dover G. A. KP elements repress P-induced hybrid dysgenesis in Drosophila melanogaster. EMBO J. 1987 Dec 20;6(13):4125–4135. doi: 10.1002/j.1460-2075.1987.tb02758.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brookfield J. F. Interspersed repetitive DNA sequences are unlikely to be parasitic. J Theor Biol. 1982 Jan 21;94(2):281–299. doi: 10.1016/0022-5193(82)90313-7. [DOI] [PubMed] [Google Scholar]
  7. Charlesworth B., Langley C. H. The evolution of self-regulated transposition of transposable elements. Genetics. 1986 Feb;112(2):359–383. doi: 10.1093/genetics/112.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daniels S. B., Clark S. H., Kidwell M. G., Chovnick A. Genetic transformation of Drosophila melanogaster with an autonomous P element: phenotypic and molecular analyses of long-established transformed lines. Genetics. 1987 Apr;115(4):711–723. doi: 10.1093/genetics/115.4.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Engels W. R., Benz W. K., Preston C. R., Graham P. L., Phillis R. W., Robertson H. M. Somatic effects of P element activity in Drosophila melanogaster: pupal lethality. Genetics. 1987 Dec;117(4):745–757. doi: 10.1093/genetics/117.4.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Engels W. R. On the evolution and population genetics of hybrid-dysgenesis-causing transposable elements in Drosophila. Philos Trans R Soc Lond B Biol Sci. 1986 Jan 29;312(1154):205–215. doi: 10.1098/rstb.1986.0002. [DOI] [PubMed] [Google Scholar]
  11. Engels W. R. The P family of transposable elements in Drosophila. Annu Rev Genet. 1983;17:315–344. doi: 10.1146/annurev.ge.17.120183.001531. [DOI] [PubMed] [Google Scholar]
  12. Finnegan D. J. Transposable elements in eukaryotes. Int Rev Cytol. 1985;93:281–326. doi: 10.1016/s0074-7696(08)61376-5. [DOI] [PubMed] [Google Scholar]
  13. Kaplan N. L., Brookfield J. F. The effect of homozygosity of selective differences between sites of transposable elements. Theor Popul Biol. 1983 Jun;23(3):273–280. doi: 10.1016/0040-5809(83)90018-7. [DOI] [PubMed] [Google Scholar]
  14. Kaplan N. L., Brookfield J. F. Transposable Elements in Mendelian Populations. III. Statistical Results. Genetics. 1983 Jul;104(3):485–495. doi: 10.1093/genetics/104.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaplan N., Darden T., Langley C. H. Evolution and extinction of transposable elements in Mendelian populations. Genetics. 1985 Feb;109(2):459–480. doi: 10.1093/genetics/109.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Langley C. H., Brookfield J. F., Kaplan N. Transposable elements in mendelian populations. I. A theory. Genetics. 1983 Jul;104(3):457–471. doi: 10.1093/genetics/104.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Langley C. H., Montgomery E., Hudson R., Kaplan N., Charlesworth B. On the role of unequal exchange in the containment of transposable element copy number. Genet Res. 1988 Dec;52(3):223–235. doi: 10.1017/s0016672300027695. [DOI] [PubMed] [Google Scholar]
  18. Montgomery E. A., Langley C. H. Transposable Elements in Mendelian Populations. II. Distribution of Three COPIA-like Elements in a Natural Population of DROSOPHILA MELANOGASTER. Genetics. 1983 Jul;104(3):473–483. doi: 10.1093/genetics/104.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. O'Hare K., Rubin G. M. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell. 1983 Aug;34(1):25–35. doi: 10.1016/0092-8674(83)90133-2. [DOI] [PubMed] [Google Scholar]
  20. Ohta T. A model of duplicative transposition and gene conversion for repetitive DNA families. Genetics. 1985 Jul;110(3):513–524. doi: 10.1093/genetics/110.3.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ohta T. Population genetics of transposable elements. IMA J Math Appl Med Biol. 1984;1(1):17–29. doi: 10.1093/imammb/1.1.17. [DOI] [PubMed] [Google Scholar]
  22. Preston C. R., Engels W. R. Spread of P transposable elements in inbred lines of Drosophila melanogaster. Prog Nucleic Acid Res Mol Biol. 1989;36:71–85. doi: 10.1016/s0079-6603(08)60162-2. [DOI] [PubMed] [Google Scholar]
  23. Saedler H., Nevers P. Transposition in plants: a molecular model. EMBO J. 1985 Mar;4(3):585–590. doi: 10.1002/j.1460-2075.1985.tb03670.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Simmons M. J., Raymond J. D., Boedigheimer M. J., Zunt J. R. The influence of nonautonomous P elements on hybrid dysgenesis in Drosophila melanogaster. Genetics. 1987 Dec;117(4):671–685. doi: 10.1093/genetics/117.4.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Slatkin M. Genetic differentiation of transposable elements under mutation and unbiased gene conversion. Genetics. 1985 May;110(1):145–158. doi: 10.1093/genetics/110.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Snyder M., Doolittle W. F. P elements in Drosophila: selection at many levels. Trends Genet. 1988 Jun;4(6):147–149. doi: 10.1016/0168-9525(88)90016-9. [DOI] [PubMed] [Google Scholar]
  27. Stacey S. N., Lansman R. A., Brock H. W., Grigliatti T. A. Distribution and conservation of mobile elements in the genus Drosophila. Mol Biol Evol. 1986 Nov;3(6):522–534. doi: 10.1093/oxfordjournals.molbev.a040413. [DOI] [PubMed] [Google Scholar]
  28. Varmus H. E. Form and function of retroviral proviruses. Science. 1982 May 21;216(4548):812–820. doi: 10.1126/science.6177038. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES