Skip to main content
Genetics logoLink to Genetics
. 1991 Oct;129(2):597–602. doi: 10.1093/genetics/129.2.597

A Mathematical Model of Interference for Use in Constructing Linkage Maps from Tetrad Data

J S King 1, R K Mortimer 1
PMCID: PMC1204647  PMID: 1743495

Abstract

In determining genetic map distances it is necessary to infer crossover frequencies from the ratios of recombinant and parental progeny. To do this accurately, in intervals where multiple crossovers may occur, a mathematical model of chiasma interference must be assumed when mapping in organisms displaying such interference. In Saccharomyces cerevisae the model most frequently used is that of R. W. Barratt. An alternative to this model is presented. This new model is implemented using a microcomputer and standard numerical methods. It is demonstrated to fit ranked tetrad data from Saccharomyces more closely than the Barratt model and thus generates more accurate estimates of map distances when used with two-point data. A computer program implementing the model has been developed for use in calculating map distances from tetrad data in Saccharomyces.

Full Text

The Full Text of this article is available as a PDF (529.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARRATT R. W., NEWMEYER D., PERKINS D. D., GARNJOBST L. Map construction in Neurospora crassa. Adv Genet. 1954;6:1–93. doi: 10.1016/s0065-2660(08)60127-3. [DOI] [PubMed] [Google Scholar]
  2. Cooper T. G., Lam C., Turoscy V. Structural analysis of the dur loci in S. cerevisiae: two domains of a single multifunctional gene. Genetics. 1980 Mar;94(3):555–580. doi: 10.1093/genetics/94.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. King J. S., Mortimer R. K. A polymerization model of chiasma interference and corresponding computer simulation. Genetics. 1990 Dec;126(4):1127–1138. doi: 10.1093/genetics/126.4.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ma C., Mortimer R. K. Empirical equation that can be used to determine genetic map distances from tetrad data. Mol Cell Biol. 1983 Oct;3(10):1886–1887. doi: 10.1128/mcb.3.10.1886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Mortimer R. K., Schild D., Contopoulou C. R., Kans J. A. Genetic map of Saccharomyces cerevisiae, edition 10. Yeast. 1989 Sep-Oct;5(5):321–403. doi: 10.1002/yea.320050503. [DOI] [PubMed] [Google Scholar]
  6. Mortimer R. K., Schild D. Genetic map of Saccharomyces cerevisiae. Microbiol Rev. 1980 Dec;44(4):519–571. doi: 10.1128/mr.44.4.519-571.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Perkins D. D. Biochemical Mutants in the Smut Fungus Ustilago Maydis. Genetics. 1949 Sep;34(5):607–626. doi: 10.1093/genetics/34.5.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Snow R. Maximum likelihood estimation of linkage and interference from tetrad data. Genetics. 1979 May;92(1):231–245. doi: 10.1093/genetics/92.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES