Skip to main content
Genetics logoLink to Genetics
. 1991 Nov;129(3):639–645. doi: 10.1093/genetics/129.3.639

Large Inversion in Escherichia Coli K-12 1485in between Inversely Oriented Is3 Elements near Lac and Cdd

Y Komoda 1, M Enomoto 1, A Tominaga 1
PMCID: PMC1204731  PMID: 1661252

Abstract

A companion study has shown that the inversion carried by strain 1485IN has one terminus between lac and proC and the other between his and cdd of the normal strain. Starting with this mapping data, we have done molecular work demonstrating that the inversion occurred by recombination between inversely oriented two IS3 elements, one present near lac and the other near the cdd locus; i.e., the inversion is IN(is3B-is3E). Evidence supporting this conclusion includes: (i) Normal and inversion strains share two short regions with identical restriction maps. One of these regions is near lac and the other near cdd. (ii) IS3 homology was detected in each of the terminus regions of both the normal and inversion strains. (iii) The sequence on one side of the original IS3 element near lac has been exchanged with the sequence on one side of the IS3 near cdd. Whether the inversion has occurred by one event of homologous recombination between the two IS3 elements or has been caused by involvement of IS3 elements on an F factor is discussed. Another rearrangement, probably related to inversion and deletion, was detected between the IS3 and cdd of the inversion strain.

Full Text

The Full Text of this article is available as a PDF (747.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin S., Abeles A. Partition of unit-copy miniplasmids to daughter cells. I. P1 and F miniplasmids contain discrete, interchangeable sequences sufficient to promote equipartition. J Mol Biol. 1983 Sep 15;169(2):353–372. doi: 10.1016/s0022-2836(83)80055-2. [DOI] [PubMed] [Google Scholar]
  2. Bachmann B. J. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev. 1972 Dec;36(4):525–557. doi: 10.1128/br.36.4.525-557.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Birkenbihl R. P., Vielmetter W. Complete maps of IS1, IS2, IS3, IS4, IS5, IS30 and IS150 locations in Escherichia coli K12. Mol Gen Genet. 1989 Dec;220(1):147–153. doi: 10.1007/BF00260869. [DOI] [PubMed] [Google Scholar]
  4. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deonier R. C., Hadley R. G., Hu M. Enumeration and identification of IS3 elements in Escherichia coli strains. J Bacteriol. 1979 Mar;137(3):1421–1424. doi: 10.1128/jb.137.3.1421-1424.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Faelen M., Toussaint A. Inversion induced by temperature bacteriophage mu-1 in the chromosome of Escherichia coli K-12. J Bacteriol. 1980 May;142(2):391–399. doi: 10.1128/jb.142.2.391-399.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  8. Gardner R. C., Caughey P. A., Lane D., Bergquist P. L. Replication mutants of the F-plasmid of Escherichia coli. II. Cloned replication regions of temperature-sensitive mutants. Plasmid. 1980 Mar;3(2):179–192. doi: 10.1016/0147-619x(80)90108-0. [DOI] [PubMed] [Google Scholar]
  9. Grunstein M., Hogness D. S. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3961–3965. doi: 10.1073/pnas.72.10.3961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Habermann P., Starlinger P. Bidirectional deletions associated with IS4. Mol Gen Genet. 1982;185(2):216–222. doi: 10.1007/BF00330790. [DOI] [PubMed] [Google Scholar]
  11. Hanafusa T., Sakai A., Tominaga A., Enomoto M. Isolation and characterization of Escherichia coli hag operator mutants whose hag48 expression has become repressible by a Salmonella H1 repressor. Mol Gen Genet. 1989 Mar;216(1):44–50. doi: 10.1007/BF00332229. [DOI] [PubMed] [Google Scholar]
  12. Hattori M., Hidaka S., Sakaki Y. Sequence analysis of a KpnI family member near the 3' end of human beta-globin gene. Nucleic Acids Res. 1985 Nov 11;13(21):7813–7827. doi: 10.1093/nar/13.21.7813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hill C. W., Harnish B. W. Inversions between ribosomal RNA genes of Escherichia coli. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7069–7072. doi: 10.1073/pnas.78.11.7069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hu S., Ptashne K., Cohen S. N., Davidson N. alphabeta sequence of F is IS31. J Bacteriol. 1975 Aug;123(2):687–692. doi: 10.1128/jb.123.2.687-692.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Louarn J. M., Bouché J. P., Legendre F., Louarn J., Patte J. Characterization and properties of very large inversions of the E. coli chromosome along the origin-to-terminus axis. Mol Gen Genet. 1985;201(3):467–476. doi: 10.1007/BF00331341. [DOI] [PubMed] [Google Scholar]
  16. Mizusawa S., Nishimura S., Seela F. Improvement of the dideoxy chain termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of dGTP. Nucleic Acids Res. 1986 Feb 11;14(3):1319–1324. doi: 10.1093/nar/14.3.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Olszewska E., Jones K. Vacuum blotting enhances nucleic acid transfer. Trends Genet. 1988 Apr;4(4):92–94. doi: 10.1016/0168-9525(88)90095-9. [DOI] [PubMed] [Google Scholar]
  18. Rebollo J. E., François V., Louarn J. M. Detection and possible role of two large nondivisible zones on the Escherichia coli chromosome. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9391–9395. doi: 10.1073/pnas.85.24.9391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Savić D. J., Romac S. P., Ehrlich S. D. Inversion in the lactose region of Escherichia coli K-12: inversion termini map within IS3 elements alpha 3 beta 3 and beta 5 alpha 5. J Bacteriol. 1983 Aug;155(2):943–946. doi: 10.1128/jb.155.2.943-946.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Takeshita S., Sato M., Toba M., Masahashi W., Hashimoto-Gotoh T. High-copy-number and low-copy-number plasmid vectors for lacZ alpha-complementation and chloramphenicol- or kanamycin-resistance selection. Gene. 1987;61(1):63–74. doi: 10.1016/0378-1119(87)90365-9. [DOI] [PubMed] [Google Scholar]
  21. Timmerman K. P., Tu C. P. Complete sequence of IS3. Nucleic Acids Res. 1985 Mar 25;13(6):2127–2139. doi: 10.1093/nar/13.6.2127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Timmons M. S., Lieb M., Deonier R. C. Recombination between IS5 elements: requirement for homology and recombination functions. Genetics. 1986 Aug;113(4):797–810. doi: 10.1093/genetics/113.4.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Umeda M., Ohtsubo E. Mapping of insertion elements IS1, IS2 and IS3 on the Escherichia coli K-12 chromosome. Role of the insertion elements in formation of Hfrs and F' factors and in rearrangement of bacterial chromosomes. J Mol Biol. 1989 Aug 20;208(4):601–614. doi: 10.1016/0022-2836(89)90151-4. [DOI] [PubMed] [Google Scholar]
  24. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  25. Xia X. M., Enomoto M. A naturally occurring large chromosomal inversion in Escherichia coli K12. Mol Gen Genet. 1986 Nov;205(2):376–379. doi: 10.1007/BF00430454. [DOI] [PubMed] [Google Scholar]
  26. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES