Skip to main content
Genetics logoLink to Genetics
. 1991 Nov;129(3):717–725. doi: 10.1093/genetics/129.3.717

An Intragenic Suppressor of a Calmodulin Mutation in Paramecium: Genetic and Biochemical Characterization

R D Hinrichsen 1, M Pollock 1, T Hennessey 1, C Russell 1
PMCID: PMC1204739  PMID: 1661255

Abstract

We describe a suppressor of the calmodulin mutant cam1 in Paramecium tetraurelia. The cam1 mutant, which has a SER -> PHE change at residue 101 of the third calcium-binding domain, inhibits the activity of the Ca(2+)-dependent K(+) current and causes exaggerated behavioral responses to most stimuli. An enrichment scheme, based on an increased sensitivity to Ba(2+) in cam1 cells, was used to isolate suppressors. One such suppressor, designated cam101, restores both the activity of the Ca(2+)-dependent K(+) current and behavioral responses of the cells. We show that the cam101 mutant is an intragenic suppressor of cam1, based on genetic and microinjection data. The cam101 calmodulin is shown to be similar to wild-type calmodulin in terms of its ability to stimulate calmodulin-dependent phosphodiesterase at low concentrations of free calcium. However, the cam101 calmodulin has a reduced affinity for a monoclonal antibody to wild-type Paramecium calmodulin, as does the parental cam1 calmodulin, and a different mobility on acid-urea gels relative to both wild-type and cam1 calmodulin. We have been able to demonstrate that the isolation of intragenic suppressors of a calmodulin mutation is possible, which allows for the further genetic analysis of structure-function relationships in the calmodulin molecule.

Full Text

The Full Text of this article is available as a PDF (4.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
  2. Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burgess-Cassler A., Hinrichsen R. D., Maley M. E., Kung C. Biochemical characterization of a genetically altered calmodulin in Paramecium. Biochim Biophys Acta. 1987 Jul 7;913(3):321–328. doi: 10.1016/0167-4838(87)90142-7. [DOI] [PubMed] [Google Scholar]
  4. Chafouleas J. G., Dedman J. R., Means A. R. Radioimmunoassay of calmodulin. Methods Enzymol. 1982;84:138–147. doi: 10.1016/0076-6879(82)84012-3. [DOI] [PubMed] [Google Scholar]
  5. Craig T. A., Watterson D. M., Prendergast F. G., Haiech J., Roberts D. M. Site-specific mutagenesis of the alpha-helices of calmodulin. Effects of altering a charge cluster in the helix that links the two halves of calmodulin. J Biol Chem. 1987 Mar 5;262(7):3278–3284. [PubMed] [Google Scholar]
  6. Evans T. C., Nelson D. L. The cilia of Paramecium tetraurelia contain both Ca2+-dependent and Ca2+-inhibitable calmodulin-binding proteins. Biochem J. 1989 Apr 15;259(2):385–396. doi: 10.1042/bj2590385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hennessey T. M., Kung C. A calcium-dependent potassium current is increased by a single-gene mutation in Paramecium. J Membr Biol. 1987;98(2):145–155. doi: 10.1007/BF01872127. [DOI] [PubMed] [Google Scholar]
  8. Hinrichsen R. D., Burgess-Cassler A., Soltvedt B. C., Hennessey T., Kung C. Restoration by calmodulin of a Ca2+-dependent K+ current missing in a mutant of Paramecium. Science. 1986 Apr 25;232(4749):503–506. doi: 10.1126/science.2421410. [DOI] [PubMed] [Google Scholar]
  9. Hinrichsen R. D., Saimi Y., Kung C. Mutants with altered Ca2+-channel properties in Paramecium tetraurelia: isolation, characterization and genetic analysis. Genetics. 1984 Nov;108(3):545–558. doi: 10.1093/genetics/108.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hinrichsen R., Wilson E., Lukas T., Craig T., Schultz J., Watterson D. M. Analysis of the molecular basis of calmodulin defects that affect ion channel-mediated cellular responses: site-specific mutagenesis and microinjection. J Cell Biol. 1990 Dec;111(6 Pt 1):2537–2542. doi: 10.1083/jcb.111.6.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kink J. A., Maley M. E., Preston R. R., Ling K. Y., Wallen-Friedman M. A., Saimi Y., Kung C. Mutations in paramecium calmodulin indicate functional differences between the C-terminal and N-terminal lobes in vivo. Cell. 1990 Jul 13;62(1):165–174. doi: 10.1016/0092-8674(90)90250-i. [DOI] [PubMed] [Google Scholar]
  12. Manalan A. S., Klee C. B. Calmodulin. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;18:227–278. [PubMed] [Google Scholar]
  13. Preston R. R., Kink J. A., Hinrichsen R. D., Saimi Y., Kung C. Calmodulin mutants and Ca2(+)-dependent channels in Paramecium. Annu Rev Physiol. 1991;53:309–319. doi: 10.1146/annurev.ph.53.030191.001521. [DOI] [PubMed] [Google Scholar]
  14. Preston R. R., Wallen-Friedman M. A., Saimi Y., Kung C. Calmodulin defects cause the loss of Ca2(+)-dependent K+ currents in two pantophobiac mutants of Paramecium tetraurelia. J Membr Biol. 1990 Apr;115(1):51–60. doi: 10.1007/BF01869105. [DOI] [PubMed] [Google Scholar]
  15. Saimi Y., Hinrichsen R. D., Forte M., Kung C. Mutant analysis shows that the Ca2+-induced K+ current shuts off one type of excitation in Paramecium. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5112–5116. doi: 10.1073/pnas.80.16.5112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Saimi Y., Kung C. Are ions involved in the gating of calcium channels? Science. 1982 Oct 8;218(4568):153–156. doi: 10.1126/science.6289432. [DOI] [PubMed] [Google Scholar]
  17. Saimi Y., Kung C. Behavioral genetics of Paramecium. Annu Rev Genet. 1987;21:47–65. doi: 10.1146/annurev.ge.21.120187.000403. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES