Skip to main content
Genetics logoLink to Genetics
. 1991 Nov;129(3):763–771. doi: 10.1093/genetics/129.3.763

Analysis of Sequences Regulating Larval Expression of the Adh Gene of Drosophila Melanogaster

NLL Shen 1, E C Hotaling 1, G Subrahmanyam 1, P F Martin 1, W Sofer 1
PMCID: PMC1204743  PMID: 1752419

Abstract

The effects of a series of eight, 50 base pair internal deletions in the 5' region upstream of the proximal transcription start site of the Adh gene of Drosophila melanogaster were examined in a quantitative assay. Mixtures of two plasmids, one bearing a deleted gene, the other with an intact reference gene, were injected into alcohol dehydrogenase-negative embryos. Third instar larvae of the injected generation were assayed for relative alcohol dehydrogenase enzyme activity. Quantitative analysis of the eight deletions indicated that two regions were required for any detectable enzyme activity and one region was required for appropriate tissue specificity. The remaining five deletions significantly decreased, but did not eliminate activity. When the deleted genes were placed on a plasmid with an intact reference gene, activities of all but one deletion were restored to levels equivalent to that of the intact reference gene (regardless of orientation). This restoration of activity did not occur when the regulatory region of the intact gene was replaced with the Hsp70 heat shock promoter nor when the 50-base pair deletion encompassed the region that includes the TATA sequence. The fact that seven of the eight deleted genes express activity in the presence of a reference gene on the same plasmid suggests that the deleted gene is controlled by regulatory elements in the reference gene. Further, these regulatory elements exhibit no preference for their own, more proximate, promoter.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aamodt E. J., Chung M. A., McGhee J. D. Spatial control of gut-specific gene expression during Caenorhabditis elegans development. Science. 1991 Apr 26;252(5005):579–582. doi: 10.1126/science.2020855. [DOI] [PubMed] [Google Scholar]
  2. Benyajati C., Place A. R., Sofer W. Formaldehyde mutagenesis in Drosophila. Molecular analysis of ADH-negative mutants. Mutat Res. 1983 Sep;111(1):1–7. doi: 10.1016/0027-5107(83)90002-7. [DOI] [PubMed] [Google Scholar]
  3. Benyajati C., Spoerel N., Haymerle H., Ashburner M. The messenger RNA for alcohol dehydrogenase in Drosophila melanogaster differs in its 5' end in different developmental stages. Cell. 1983 May;33(1):125–133. doi: 10.1016/0092-8674(83)90341-0. [DOI] [PubMed] [Google Scholar]
  4. Bonner J. J., Parks C., Parker-Thornburg J., Mortin M. A., Pelham H. R. The use of promoter fusions in Drosophila genetics: isolation of mutations affecting the heat shock response. Cell. 1984 Jul;37(3):979–991. doi: 10.1016/0092-8674(84)90432-x. [DOI] [PubMed] [Google Scholar]
  5. Corbin V., Maniatis T. Identification of cis-regulatory elements required for larval expression of the Drosophila melanogaster alcohol dehydrogenase gene. Genetics. 1990 Mar;124(3):637–646. doi: 10.1093/genetics/124.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dobzhansky T, Sturtevant A H. Inversions in the Chromosomes of Drosophila Pseudoobscura. Genetics. 1938 Jan;23(1):28–64. doi: 10.1093/genetics/23.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fontdevila A., Zapata C., Alvarez G., Sanchez L., Méndez J., Enriquez I. Genetic Coadaptation in the Chromosomal Polymorphism of DROSOPHILA SUBOBSCURA. I. Seasonal Changes of Gametic Disequilibrium in a Natural Population. Genetics. 1983 Dec;105(4):935–955. doi: 10.1093/genetics/105.4.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heberlein U., England B., Tjian R. Characterization of Drosophila transcription factors that activate the tandem promoters of the alcohol dehydrogenase gene. Cell. 1985 Jul;41(3):965–977. doi: 10.1016/s0092-8674(85)80077-5. [DOI] [PubMed] [Google Scholar]
  9. Heuchel R., Matthias P., Schaffner W. Two closely spaced promoters are equally activated by a remote enhancer: evidence against a scanning model for enhancer action. Nucleic Acids Res. 1989 Nov 25;17(22):8931–8947. doi: 10.1093/nar/17.22.8931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jongens T. A., Fowler T., Shermoen A. W., Beckendorf S. K. Functional redundancy in the tissue-specific enhancer of the Drosophila Sgs-4 gene. EMBO J. 1988 Aug;7(8):2559–2567. doi: 10.1002/j.1460-2075.1988.tb03105.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kadesch T., Berg P. Effects of the position of the simian virus 40 enhancer on expression of multiple transcription units in a single plasmid. Mol Cell Biol. 1986 Jul;6(7):2593–2601. doi: 10.1128/mcb.6.7.2593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LEVITAN M. Non-random association of inversions. Cold Spring Harb Symp Quant Biol. 1958;23:251–268. doi: 10.1101/sqb.1958.023.01.027. [DOI] [PubMed] [Google Scholar]
  13. Laurie C. C., Stam L. F. Quantitative analysis of RNA produced by slow and fast alleles of Adh in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5161–5165. doi: 10.1073/pnas.85.14.5161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Martin P., Martin A., Osmani A., Sofer W. A transient expression assay for tissue-specific gene expression of alcohol dehydrogenase in Drosophila. Dev Biol. 1986 Oct;117(2):574–580. doi: 10.1016/0012-1606(86)90326-x. [DOI] [PubMed] [Google Scholar]
  15. Moses K., Heberlein U., Ashburner M. The Adh gene promoters of Drosophila melanogaster and Drosophila orena are functionally conserved and share features of sequence structure and nuclease-protected sites. Mol Cell Biol. 1990 Feb;10(2):539–548. doi: 10.1128/mcb.10.2.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Parker-Thornburg J., Bonner J. J. Mutations that induce the heat shock response of Drosophila. Cell. 1987 Dec 4;51(5):763–772. doi: 10.1016/0092-8674(87)90099-7. [DOI] [PubMed] [Google Scholar]
  17. Posakony J. W., Fischer J. A., Maniatis T. Identification of DNA sequences required for the regulation of Drosophila alcohol dehydrogenase gene expression. Cold Spring Harb Symp Quant Biol. 1985;50:515–520. doi: 10.1101/sqb.1985.050.01.063. [DOI] [PubMed] [Google Scholar]
  18. Renkawitz R. Transcriptional repression in eukaryotes. Trends Genet. 1990 Jun;6(6):192–197. doi: 10.1016/0168-9525(90)90176-7. [DOI] [PubMed] [Google Scholar]
  19. Schwartz M., O'Donnell J., Sofer W. Origin of the multiple forms of alcohol dehydrogenase from Drosophila melanogaster. Arch Biochem Biophys. 1979 May;194(2):365–378. doi: 10.1016/0003-9861(79)90629-5. [DOI] [PubMed] [Google Scholar]
  20. Shen N. L., Subrahmanyam G., Clark W., Martin P., Sofer W. Analysis of Adh gene regulation in Drosophila: studies using somatic transformation. Dev Genet. 1989;10(3):210–219. doi: 10.1002/dvg.1020100310. [DOI] [PubMed] [Google Scholar]
  21. Sofer W., Martin P. F. Analysis of alcohol dehydrogenase gene expression in Drosophila. Annu Rev Genet. 1987;21:203–225. doi: 10.1146/annurev.ge.21.120187.001223. [DOI] [PubMed] [Google Scholar]
  22. Sofer W., Martin P. Analysis of densitometric data obtained from electrophoretic analysis. Comput Appl Biosci. 1987 Jun;3(2):129–129. doi: 10.1093/bioinformatics/3.2.129. [DOI] [PubMed] [Google Scholar]
  23. Thatcher D. R. The complete amino acid sequence of three alcohol dehydrogenase alleloenzymes (AdhN-11, AdhS and AdhUF) from the fruitfly Drosophila melanogaster. Biochem J. 1980 Jun 1;187(3):875–883. doi: 10.1042/bj1870875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wasylyk B., Wasylyk C., Augereau P., Chambon P. The SV40 72 bp repeat preferentially potentiates transcription starting from proximal natural or substitute promoter elements. Cell. 1983 Feb;32(2):503–514. doi: 10.1016/0092-8674(83)90470-1. [DOI] [PubMed] [Google Scholar]
  25. Winberg J. O., Hovik R., McKinley-McKee J. S. The alcohol dehydrogenase alleloenzymes AdhS and AdhF from the fruitfly Drosophila melanogaster: an enzymatic rate assay to determine the active-site concentration. Biochem Genet. 1985 Apr;23(3-4):205–216. doi: 10.1007/BF00504319. [DOI] [PubMed] [Google Scholar]
  26. de Villiers J., Olson L., Banerji J., Schaffner W. Analysis of the transcriptional enhancer effect. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 2):911–919. doi: 10.1101/sqb.1983.047.01.105. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES