Skip to main content
Genetics logoLink to Genetics
. 1991 Nov;129(3):791–802. doi: 10.1093/genetics/129.3.791

Lack of Underdominance in a Naturally Occurring Pericentric Inversion in Drosophila Melanogaster and Its Implications for Chromosome Evolution

J A Coyne 1, S Aulard 1, A Berry 1
PMCID: PMC1204747  PMID: 1684330

Abstract

In(2LR)PL is a large pericentric inversion polymorphic in populations of Drosophila melanogaster on two Indian Ocean islands. This polymorphism is puzzling: because crossing over in female heterokaryotypes produces inviable zygotes, such inversions are thought to be underdominant and should be quickly eliminated from populations. The observed fixation for such inversions among related species has led to the idea that genetic drift can cause chromosome evolution in opposition to natural selection. We found, however, that In(2LR)PL is not underdominant for fertility, as heterokaryotypic females produce perfectly viable eggs. Genetic analysis shows that the lack of underdominance results from the nearly complete absence of crossing over in the inverted region. This phenomenon is probably caused by mechanical and not genetic factors, because crossing over is not suppressed in In(2LR)PL homokaryotypes. Our observations do not support the idea that the fixation of pericentric inversions among closely related species implies the action of genetic drift overcoming strong natural selection in very small populations. If chromosome arrangements vary in their underdominance, it is those with the least disadvantage as heterozygotes, like In(2LR)PL, that will be polymorphic or fixed in natural populations.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley T., Moses M. J., Solari A. J. Fine structure and behaviour of a pericentric inversion in the sand rat, Psammomys obesus. J Cell Sci. 1981 Aug;50:105–119. doi: 10.1242/jcs.50.1.105. [DOI] [PubMed] [Google Scholar]
  2. Baker R. J., Bickham J. W. Speciation by monobrachial centric fusions. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8245–8248. doi: 10.1073/pnas.83.21.8245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bojko M. Synaptic adjustment of inversion loops in Neurospora crassa. Genetics. 1990 Mar;124(3):593–598. doi: 10.1093/genetics/124.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brittnacher J. G., Ganetzky B. On the Components of Segregation Distortion in DROSOPHILA MELANOGASTER. II. Deletion Mapping and Dosage Analysis of the SD Locus. Genetics. 1983 Apr;103(4):659–673. doi: 10.1093/genetics/103.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bruère A. N., Ellis P. M. Cytogenetics and reproduction of sheep with multiple centric fusions (Robertsonian translocations). J Reprod Fertil. 1979 Nov;57(2):363–375. doi: 10.1530/jrf.0.0570363. [DOI] [PubMed] [Google Scholar]
  6. Coleman L C. The Cytology of Some Western Species of Trimerotropis (Acrididae). Genetics. 1948 Nov;33(6):519–528. doi: 10.1093/genetics/33.6.519a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coyne J. A. A test of the role of meiotic drive in fixing a pericentric inversion. Genetics. 1989 Sep;123(1):241–243. doi: 10.1093/genetics/123.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coyne J. A. Meiotic segregation and male recombination in interspecific hybrids of Drosophila. Genetics. 1986 Oct;114(2):485–494. doi: 10.1093/genetics/114.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Elder F. F., Pathak S. Light microscopic observations on the behavior of silver-stained trivalents in pachytene cells of Sigmodon fulviventer (Rodentia, Muridae) heterozygous for centric fusion. Cytogenet Cell Genet. 1980;27(1):31–38. doi: 10.1159/000131461. [DOI] [PubMed] [Google Scholar]
  10. Gabriel-Robez O., Ratomponirina C., Croquette M., Couturier J., Rumpler Y. Synaptonemal complexes in a subfertile man with a pericentric inversion in chromosome 21. Heterosynapsis without previous homosynapsis. Cytogenet Cell Genet. 1988;48(2):84–87. doi: 10.1159/000132595. [DOI] [PubMed] [Google Scholar]
  11. Greenbaum I. F., Reed M. J. Evidence for heterosynaptic pairing of the inverted segment in pericentric inversion heterozygotes of the deer mouse (Peromyscus maniculatus). Cytogenet Cell Genet. 1984;38(2):106–111. doi: 10.1159/000132040. [DOI] [PubMed] [Google Scholar]
  12. Hale D. W. Heterosynapsis and suppression of chiasmata within heterozygous pericentric inversions of the Sitka deer mouse. Chromosoma. 1986;94(6):425–432. doi: 10.1007/BF00292751. [DOI] [PubMed] [Google Scholar]
  13. Hawley R. S. Chromosomal sites necessary for normal levels of meiotic recombination in Drosophila melanogaster. I. Evidence for and mapping of the sites. Genetics. 1980 Mar;94(3):625–646. doi: 10.1093/genetics/94.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kreitman M., Aguadé M. Genetic uniformity in two populations of Drosophila melanogaster as revealed by filter hybridization of four-nucleotide-recognizing restriction enzyme digests. Proc Natl Acad Sci U S A. 1986 May;83(10):3562–3566. doi: 10.1073/pnas.83.10.3562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Martin J. Meiosis in inversion heterozygotes in Chironomidae. Can J Genet Cytol. 1967 Mar;9(1):255–268. doi: 10.1139/g67-021. [DOI] [PubMed] [Google Scholar]
  16. Moses M. J., Poorman P. A., Roderick T. H., Davisson M. T. Synaptonemal complex analysis of mouse chromosomal rearrangements. IV. Synapsis and synaptic adjustment in two paracentric inversions. Chromosoma. 1982;84(4):457–474. doi: 10.1007/BF00292848. [DOI] [PubMed] [Google Scholar]
  17. Nachman M. W., Myers P. Exceptional chromosomal mutations in a rodent population are not strongly underdominant. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6666–6670. doi: 10.1073/pnas.86.17.6666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Novitski E, Braver G. An Analysis of Crossing over within a Heterozygous Inversion in Drosophila Melanogaster. Genetics. 1954 Mar;39(2):197–209. doi: 10.1093/genetics/39.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Roberts P. A. A positive correlation between crossing over within heterozygous pericentric inversions and reduced egg hatch of Drosophila females. Genetics. 1967 May;56(1):179–187. doi: 10.1093/genetics/56.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Roberts P. A. Screening for x-ray-induced crossover suppressors in Drosophila melanogaster: prevalence and effectiveness of translocations. Genetics. 1970 Jul;65(3):429–448. doi: 10.1093/genetics/65.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. STONE W. S. Genetic and chromosomal variability in Drosophila. Cold Spring Harb Symp Quant Biol. 1955;20:256-69; discussion, 269-70. doi: 10.1101/sqb.1955.020.01.024. [DOI] [PubMed] [Google Scholar]
  22. Sheen J. Y., Seed B. Electrolyte gradient gels for DNA sequencing. Biotechniques. 1988 Nov-Dec;6(10):942–944. [PubMed] [Google Scholar]
  23. Sturtevant A H, Beadle G W. The Relations of Inversions in the X Chromosome of Drosophila Melanogaster to Crossing over and Disjunction. Genetics. 1936 Sep;21(5):554–604. doi: 10.1093/genetics/21.5.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. White M. J. Models of speciation. New concepts suggest that the classical sympatric and allopatric models are not the only alternatives. Science. 1968 Mar 8;159(3819):1065–1070. doi: 10.1126/science.159.3819.1065. [DOI] [PubMed] [Google Scholar]
  25. Wright T. R. A cold-sensitive zygotic lethal causing high frequencies of nondisjunction during meiosis I in Drosophila melanogaster females. Genetics. 1974 Mar;76(3):511–536. doi: 10.1093/genetics/76.3.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zhang P., Knowles B. A., Goldstein L. S., Hawley R. S. A kinesin-like protein required for distributive chromosome segregation in Drosophila. Cell. 1990 Sep 21;62(6):1053–1062. doi: 10.1016/0092-8674(90)90383-p. [DOI] [PubMed] [Google Scholar]
  27. Zimmering S., Sandler L., Nicoletti B. Mechanisms of meiotic drive. Annu Rev Genet. 1970;4:409–436. doi: 10.1146/annurev.ge.04.120170.002205. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES