Skip to main content
Genetics logoLink to Genetics
. 1991 Nov;129(3):957–962. doi: 10.1093/genetics/129.3.957

Transient Mutators: A Semiquantitative Analysis of the Influence of Translation and Transcription Errors on Mutation Rates

J Ninio 1
PMCID: PMC1204761  PMID: 1752431

Abstract

A population of bacteria growing in a nonlimiting medium includes mutator bacteria and transient mutators defined as wild-type bacteria which, due to occasional transcription or translation errors, display a mutator phenotype. A semiquantitative theoretical analysis of the steady-state composition of an Escherichia coli population suggests that true strong genotypic mutators produce about 3 X 10(-3) of the single mutations arising in the population, while transient mutators produce at least 10% of the single mutations and more than 95% of the simultaneous double mutations. Numbers of mismatch repair proteins inherited by the offspring, proportions of lethal mutations and mortality rates are among the main parameters that influence the steady-state composition of the population. These results have implications for the experimental manipulation of mutation rates and the evolutionary fixation of frequent but nearly neutral mutations (e.g., synonymous codon substitutions).

Full Text

The Full Text of this article is available as a PDF (584.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biswas D. K., Gorini L. Restriction, de-restriction and mistranslation in missense suppression. Ribosomal discrimination of transfer RNA's. J Mol Biol. 1972 Feb 28;64(1):119–134. doi: 10.1016/0022-2836(72)90324-5. [DOI] [PubMed] [Google Scholar]
  2. Blank A., Gallant J. A., Burgess R. R., Loeb L. A. An RNA polymerase mutant with reduced accuracy of chain elongation. Biochemistry. 1986 Oct 7;25(20):5920–5928. doi: 10.1021/bi00368a013. [DOI] [PubMed] [Google Scholar]
  3. Bouadloun F., Donner D., Kurland C. G. Codon-specific missense errors in vivo. EMBO J. 1983;2(8):1351–1356. doi: 10.1002/j.1460-2075.1983.tb01591.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caillet J., Droogmans L. Molecular cloning of the Escherichia coli miaA gene involved in the formation of delta 2-isopentenyl adenosine in tRNA. J Bacteriol. 1988 Sep;170(9):4147–4152. doi: 10.1128/jb.170.9.4147-4152.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cairns J., Overbaugh J., Miller S. The origin of mutants. Nature. 1988 Sep 8;335(6186):142–145. doi: 10.1038/335142a0. [DOI] [PubMed] [Google Scholar]
  6. Cox E. C. Bacterial mutator genes and the control of spontaneous mutation. Annu Rev Genet. 1976;10:135–156. doi: 10.1146/annurev.ge.10.120176.001031. [DOI] [PubMed] [Google Scholar]
  7. Damagnez V., Doutriaux M. P., Radman M. Saturation of mismatch repair in the mutD5 mutator strain of Escherichia coli. J Bacteriol. 1989 Aug;171(8):4494–4497. doi: 10.1128/jb.171.8.4494-4497.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drake J. W. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160–7164. doi: 10.1073/pnas.88.16.7160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fersht A. R., Knill-Jones J. W. Fidelity of replication of bacteriophage phi X174 DNA in vitro and in vivo. J Mol Biol. 1983 Apr 25;165(4):633–654. doi: 10.1016/s0022-2836(83)80271-x. [DOI] [PubMed] [Google Scholar]
  10. Fowler R. G., Degnen G. E., Cox E. C. Mutational specificity of a conditional Escherichia coli mutator, mutD5. Mol Gen Genet. 1974;133(3):179–191. doi: 10.1007/BF00267667. [DOI] [PubMed] [Google Scholar]
  11. Gallant J., Palmer L. Error propagation in viable cells. Mech Ageing Dev. 1979 Apr;10(1-2):27–38. doi: 10.1016/0047-6374(79)90068-x. [DOI] [PubMed] [Google Scholar]
  12. Glass R. E., Nene V., Hunter M. G. Informational suppression as a tool for the investigation of gene structure and function. Biochem J. 1982 Apr 1;203(1):1–13. doi: 10.1042/bj2030001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gross M. D., Siegel E. C. Incidence of mutator strains in Escherichia coli and coliforms in nature. Mutat Res. 1981 Mar;91(2):107–110. doi: 10.1016/0165-7992(81)90081-6. [DOI] [PubMed] [Google Scholar]
  14. Hall B. G. Adaptive evolution that requires multiple spontaneous mutations: mutations involving base substitutions. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5882–5886. doi: 10.1073/pnas.88.13.5882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hall B. G. Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics. 1990 Sep;126(1):5–16. doi: 10.1093/genetics/126.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lahue R. S., Au K. G., Modrich P. DNA mismatch correction in a defined system. Science. 1989 Jul 14;245(4914):160–164. doi: 10.1126/science.2665076. [DOI] [PubMed] [Google Scholar]
  17. Langridge J. Mutation spectra and the neutrality of mutations. Aust J Biol Sci. 1974 Jun;27(3):309–319. doi: 10.1071/bi9740309. [DOI] [PubMed] [Google Scholar]
  18. Libby R. T., Gallant J. A. The role of RNA polymerase in transcriptional fidelity. Mol Microbiol. 1991 May;5(5):999–1004. doi: 10.1111/j.1365-2958.1991.tb01872.x. [DOI] [PubMed] [Google Scholar]
  19. Maruyama M., Horiuchi T., Maki H., Sekiguchi M. A dominant (mutD5) and a recessive (dnaQ49) mutator of Escherichia coli. J Mol Biol. 1983 Jul 15;167(4):757–771. doi: 10.1016/s0022-2836(83)80109-0. [DOI] [PubMed] [Google Scholar]
  20. McHenry C. S. The asymmetric dimeric polymerase hypothesis: a progress report. Biochim Biophys Acta. 1988 Dec 20;951(2-3):240–248. doi: 10.1016/0167-4781(88)90092-9. [DOI] [PubMed] [Google Scholar]
  21. Ninio J. Kinetic devices in protein synthesis, DNA replication, and mismatch repair. Cold Spring Harb Symp Quant Biol. 1987;52:639–646. doi: 10.1101/sqb.1987.052.01.073. [DOI] [PubMed] [Google Scholar]
  22. Novick A., Weiner M. ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON. Proc Natl Acad Sci U S A. 1957 Jul 15;43(7):553–566. doi: 10.1073/pnas.43.7.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. O'Farrell P. H. The suppression of defective translation by ppGpp and its role in the stringent response. Cell. 1978 Jul;14(3):545–557. doi: 10.1016/0092-8674(78)90241-6. [DOI] [PubMed] [Google Scholar]
  24. Painter P. R. Mutator genes and selection for the mutation rate in bacteria. Genetics. 1975 Apr;79(4):649–660. doi: 10.1093/genetics/79.4.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Parker J. Errors and alternatives in reading the universal genetic code. Microbiol Rev. 1989 Sep;53(3):273–298. doi: 10.1128/mr.53.3.273-298.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rosenberger R. F., Hilton J. The frequency of transcriptional and translational errors at nonsense codons in the lacZ gene of Escherichia coli. Mol Gen Genet. 1983;191(2):207–212. doi: 10.1007/BF00334815. [DOI] [PubMed] [Google Scholar]
  27. Schaaper R. M., Danforth B. N., Glickman B. W. Mechanisms of spontaneous mutagenesis: an analysis of the spectrum of spontaneous mutation in the Escherichia coli lacI gene. J Mol Biol. 1986 May 20;189(2):273–284. doi: 10.1016/0022-2836(86)90509-7. [DOI] [PubMed] [Google Scholar]
  28. Spudich J. L., Koshland D. E., Jr Non-genetic individuality: chance in the single cell. Nature. 1976 Aug 5;262(5568):467–471. doi: 10.1038/262467a0. [DOI] [PubMed] [Google Scholar]
  29. Stahl F. W. Bacterial genetics. A unicorn in the garden. Nature. 1988 Sep 8;335(6186):112–113. doi: 10.1038/335112a0. [DOI] [PubMed] [Google Scholar]
  30. Strigini P., Gorini L. Ribosomal mutations affecting efficiency of amber suppression. J Mol Biol. 1970 Feb 14;47(3):517–530. doi: 10.1016/0022-2836(70)90319-0. [DOI] [PubMed] [Google Scholar]
  31. Tai P. C., Wallace B. J., Davis B. D. Streptomycin causes misreading of natural messenger by interacting with ribosomes after initiation. Proc Natl Acad Sci U S A. 1978 Jan;75(1):275–279. doi: 10.1073/pnas.75.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tröbner W., Piechocki R. Selection against hypermutability in Escherichia coli during long term evolution. Mol Gen Genet. 1984;198(2):177–178. doi: 10.1007/BF00328720. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES