Abstract
Population geneticists make a distinction between sexual and asexual organisms depending on whether individuals inherit genes from one or two parents. When individual genes are considered, this distinction becomes less satisfactory for multicellular sexual organisms. Individual genes pass through numerous asexual mitotic cell divisions in the germline prior to meiosis and sexual recombination. The processes of mitotic mutation, mitotic crossing over, and mitotic gene conversion create genotypic diversity between diploid cells in the germline. Genes expressed in the germline whose products affect cell viability (such as many ``housekeeping'' enzymes) may be subjected to natural selection acting on this variability resulting in a non-Mendelian output of gametes. Such genes will be governed by the population genetics of the sexual/asexual life cycle rather than the conventional sexual/Mendelian life cycle. A model is developed to investigate some properties of the sexual/asexual life cycle. When appropriate parameter values were included in the model, it was found that mutation rates per locus per gamete may vary by a factor of up to 100 if selection acts in the germline. Sexual/asexual populations appear able to evolve to a genotype of higher fitness despite intervening genotypes of lower fitness, reducing the problems of underdominance and Wright's adaptive landscape encountered by purely sexual populations. As might be expected this ability is chiefly determined by the number of asexual mitotic cell divisions within the germline. The evolutionary consequences of ``housekeeping'' loci being governed by the dynamics of the sexual/asexual life cycle are considered.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames B. N., Lee F. D., Durston W. E. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci U S A. 1973 Mar;70(3):782–786. doi: 10.1073/pnas.70.3.782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett C. B., Luo X., Refolo L. M., Humayun M. Z. Effects of SOS and MucAB functions on reactivation and mutagenesis of M13 replicative form DNA bearing bulky lesions. Mutat Res. 1988 Nov;202(1):223–234. doi: 10.1016/0027-5107(88)90186-8. [DOI] [PubMed] [Google Scholar]
- Braun R. E., Behringer R. R., Peschon J. J., Brinster R. L., Palmiter R. D. Genetically haploid spermatids are phenotypically diploid. Nature. 1989 Jan 26;337(6205):373–376. doi: 10.1038/337373a0. [DOI] [PubMed] [Google Scholar]
- Brouwer J., Adhin M. R., van de Putte P. Effect of pKM101 on cell killing and specificity of mutation induction by cis-diaminedichloroplatinum(II) in Escherichia coli K-12. J Bacteriol. 1983 Dec;156(3):1275–1281. doi: 10.1128/jb.156.3.1275-1281.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnouf D., Duane M., Fuchs R. P. Spectrum of cisplatin-induced mutations in Escherichia coli. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3758–3762. doi: 10.1073/pnas.84.11.3758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buss L. W. Evolution, development, and the units of selection. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1387–1391. doi: 10.1073/pnas.80.5.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chetsanga C. J., Polidori G., Mainwaring M. Analysis and excision of ring-opened phosphoramide mustard-deoxyguanine adducts in DNA. Cancer Res. 1982 Jul;42(7):2616–2621. [PubMed] [Google Scholar]
- Drake J. W., Baltz R. H. The biochemistry of mutagenesis. Annu Rev Biochem. 1976;45:11–37. doi: 10.1146/annurev.bi.45.070176.000303. [DOI] [PubMed] [Google Scholar]
- Dryja T. P., Mukai S., Petersen R., Rapaport J. M., Walton D., Yandell D. W. Parental origin of mutations of the retinoblastoma gene. Nature. 1989 Jun 15;339(6225):556–558. doi: 10.1038/339556a0. [DOI] [PubMed] [Google Scholar]
- Foster P. L., Eisenstadt E., Miller J. H. Base substitution mutations induced by metabolically activated aflatoxin B1. Proc Natl Acad Sci U S A. 1983 May;80(9):2695–2698. doi: 10.1073/pnas.80.9.2695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Groopman J. D., Cain L. G., Kensler T. W. Aflatoxin exposure in human populations: measurements and relationship to cancer. Crit Rev Toxicol. 1988;19(2):113–145. doi: 10.3109/10408448809014902. [DOI] [PubMed] [Google Scholar]
- Hastings I. M. Potential germline competition in animals and its evolutionary implications. Genetics. 1989 Sep;123(1):191–197. doi: 10.1093/genetics/123.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hendler S., Fürer E., Srinivasan P. R. Synthesis and chemical properties of monomers and polymers containing 7-methylguanine and an investigation of their substrate or template properties for bacterial deoxyribonucleic acid or ribonucleic acid polymerases. Biochemistry. 1970 Oct 13;9(21):4141–4153. doi: 10.1021/bi00823a017. [DOI] [PubMed] [Google Scholar]
- Hertzog P. J., Smith J. R., Garner R. C. Characterisation of the imidazole ring-opened forms of trans-8,9-dihydro-8,9-dihydro-8-(7-guanyl)9-hydroxy aflatoxin B1. Carcinogenesis. 1982;3(6):723–725. doi: 10.1093/carcin/3.6.723. [DOI] [PubMed] [Google Scholar]
- Irvin T. R., Wogan G. N. Quantitation of aflatoxin B1 adduction within the ribosomal RNA gene sequences of rat liver DNA. Proc Natl Acad Sci U S A. 1984 Feb;81(3):664–668. doi: 10.1073/pnas.81.3.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobsen J. S., Refolo L. M., Conley M. P., Sambamurti K., Humayun M. Z. DNA replication-blocking properties of adducts formed by aflatoxin B1-2,3-dichloride and aflatoxin B1-2,3-oxide. Mutat Res. 1987 Jul;179(1):89–101. doi: 10.1016/0027-5107(87)90044-3. [DOI] [PubMed] [Google Scholar]
- Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennison J. A., Ripoll P. Spontaneous mitotic recombination and evidence for an X-ray-inducible system for the repair of DNA damage in Drosophila melanogaster. Genetics. 1981 May;98(1):91–103. doi: 10.1093/genetics/98.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LAWLEY P. D., BROOKES P. Acidic dissociation of 7:9-dialkylguanines and its possible relation to mutagenic properties of alkylating agents. Nature. 1961 Dec 16;192:1081–1082. doi: 10.1038/1921081b0. [DOI] [PubMed] [Google Scholar]
- LAWLEY P. D., BROOKES P. FURTHER STUDIES ON THE ALKYLATION OF NUCLEIC ACIDS AND THEIR CONSTITUENT NUCLEOTIDES. Biochem J. 1963 Oct;89:127–138. doi: 10.1042/bj0890127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LAWLEY P. D. The relative reactivities of deoxyribonucleotides and of the bases of DNA towards alkylating agents. Biochim Biophys Acta. 1957 Nov;26(2):450–451. doi: 10.1016/0006-3002(57)90042-2. [DOI] [PubMed] [Google Scholar]
- Larson K., Sahm J., Shenkar R., Strauss B. Methylation-induced blocks to in vitro DNA replication. Mutat Res. 1985 Jun-Jul;150(1-2):77–84. doi: 10.1016/0027-5107(85)90103-4. [DOI] [PubMed] [Google Scholar]
- Lawley P. D. Mutagens as carcinogens: development of current concepts. Mutat Res. 1989 Jul;213(1):3–25. doi: 10.1016/0027-5107(89)90028-6. [DOI] [PubMed] [Google Scholar]
- Lichten M., Haber J. E. Position effects in ectopic and allelic mitotic recombination in Saccharomyces cerevisiae. Genetics. 1989 Oct;123(2):261–268. doi: 10.1093/genetics/123.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin J. K., Miller J. A., Miller E. C. 2,3-Dihydro-2-(guan-7-yl)-3-hydroxy-aflatoxin B1, a major acid hydrolysis product of aflatoxin B1-DNA or -ribosomal RNA adducts formed in hepatic microsome-mediated reactions and in rat liver in vivo. Cancer Res. 1977 Dec;37(12):4430–4438. [PubMed] [Google Scholar]
- Loeb L. A. Apurinic sites as mutagenic intermediates. Cell. 1985 Mar;40(3):483–484. doi: 10.1016/0092-8674(85)90191-6. [DOI] [PubMed] [Google Scholar]
- Loeb L. A., Preston B. D. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet. 1986;20:201–230. doi: 10.1146/annurev.ge.20.120186.001221. [DOI] [PubMed] [Google Scholar]
- Lyon M. F. Search for differences among t haplotypes in distorter and responder genes. Genet Res. 1990 Feb;55(1):13–19. doi: 10.1017/s0016672300025143. [DOI] [PubMed] [Google Scholar]
- Lyon M. F. Sensitivity of various germ-cell stages to environmental mutagens. Mutat Res. 1981 Nov;87(3):323–345. doi: 10.1016/0165-1110(81)90018-x. [DOI] [PubMed] [Google Scholar]
- Miyata T., Hayashida H., Kuma K., Mitsuyasu K., Yasunaga T. Male-driven molecular evolution: a model and nucleotide sequence analysis. Cold Spring Harb Symp Quant Biol. 1987;52:863–867. doi: 10.1101/sqb.1987.052.01.094. [DOI] [PubMed] [Google Scholar]
- Panthier J. J., Guénet J. L., Condamine H., Jacob F. Evidence for mitotic recombination in Wei/+ heterozygous mice. Genetics. 1990 May;125(1):175–182. doi: 10.1093/genetics/125.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Podger D. M., Hall R. M. Induction of the SOS response by ICR191 does not influence frameshift mutagenesis at the hisC3076 marker of Salmonella typhimurium. Mutat Res. 1985 Mar;142(3):87–91. doi: 10.1016/0165-7992(85)90045-4. [DOI] [PubMed] [Google Scholar]
- Rabkin S. D., Strauss B. S. A role for DNA polymerase in the specificity of nucleotide incorporation opposite N-acetyl-2-aminofluorene adducts. J Mol Biol. 1984 Sep 25;178(3):569–594. doi: 10.1016/0022-2836(84)90239-0. [DOI] [PubMed] [Google Scholar]
- Refolo L. M., Bennett C. B., Humayun M. Z. Mechanisms of frameshift mutagenesis by aflatoxin B1-2,3-dichloride. J Mol Biol. 1987 Feb 20;193(4):609–636. doi: 10.1016/0022-2836(87)90344-5. [DOI] [PubMed] [Google Scholar]
- Refolo L. M., Conley M. P., Sambamurti K., Jacobsen J. S., Humayun M. Z. Sequence context effects in DNA replication blocks induced by aflatoxin B1. Proc Natl Acad Sci U S A. 1985 May;82(10):3096–3100. doi: 10.1073/pnas.82.10.3096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sambamurti K., Callahan J., Luo X., Perkins C. P., Jacobsen J. S., Humayun M. Z. Mechanisms of mutagenesis by a bulky DNA lesion at the guanine N7 position. Genetics. 1988 Dec;120(4):863–873. doi: 10.1093/genetics/120.4.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sancar A., Sancar G. B. DNA repair enzymes. Annu Rev Biochem. 1988;57:29–67. doi: 10.1146/annurev.bi.57.070188.000333. [DOI] [PubMed] [Google Scholar]
- Setlow R. B. Repair deficient human disorders and cancer. Nature. 1978 Feb 23;271(5647):713–717. doi: 10.1038/271713a0. [DOI] [PubMed] [Google Scholar]
- Thomas S. M., MacPhee D. G. Frameshift mutagenesis by 9-aminoacridine and ICR191 in Escherichia coli: effects of uvrB, recA and lexA mutations and of plasmid pKM101. Mutat Res. 1985 Aug;151(1):49–56. doi: 10.1016/0027-5107(85)90181-2. [DOI] [PubMed] [Google Scholar]
- Toguchida J., Ishizaki K., Sasaki M. S., Nakamura Y., Ikenaga M., Kato M., Sugimot M., Kotoura Y., Yamamuro T. Preferential mutation of paternally derived RB gene as the initial event in sporadic osteosarcoma. Nature. 1989 Mar 9;338(6211):156–158. doi: 10.1038/338156a0. [DOI] [PubMed] [Google Scholar]
- Turelli M. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theor Popul Biol. 1984 Apr;25(2):138–193. doi: 10.1016/0040-5809(84)90017-0. [DOI] [PubMed] [Google Scholar]
- Walker G. C. Inducible DNA repair systems. Annu Rev Biochem. 1985;54:425–457. doi: 10.1146/annurev.bi.54.070185.002233. [DOI] [PubMed] [Google Scholar]
- Walker G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev. 1984 Mar;48(1):60–93. doi: 10.1128/mr.48.1.60-93.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuan L. W., Keil R. L. Distance-independence of mitotic intrachromosomal recombination in Saccharomyces cerevisiae. Genetics. 1990 Feb;124(2):263–273. doi: 10.1093/genetics/124.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhu X. P., Dunn J. M., Phillips R. A., Goddard A. D., Paton K. E., Becker A., Gallie B. L. Preferential germline mutation of the paternal allele in retinoblastoma. Nature. 1989 Jul 27;340(6231):312–313. doi: 10.1038/340312a0. [DOI] [PubMed] [Google Scholar]