Skip to main content
Genetics logoLink to Genetics
. 1991 Dec;129(4):981–989. doi: 10.1093/genetics/129.4.981

Specificity of Base Substitutions Induced by the Acridine Mutagen Icr-191: Mispairing by Guanine N7 Adducts as a Mutagenic Mechanism

S R Sahasrabudhe 1, X Luo 1, M Z Humayun 1
PMCID: PMC1204782  PMID: 1783299

Abstract

As the most nucleophilic site in DNA, the guanine N7 atom is a major site of adduction by a large number of alkylating mutagens and carcinogens. Aflatoxin B(1), a powerful mutagen, is believed to act through its reaction with this DNA site. On the basis of the specificity of base substitutions induced by various adduct forms of aflatoxin, we have proposed that bulky guanine N7 adducts elicit base substitutions by two mechanisms. The first mechanism is similar to that observed for a number of bulky noninstructive lesions, whereas the second mechanism invokes mispairing between N7-adducted guanine and thymine. A prediction of the mispairing hypothesis is that diverse bulky guanine N7 adducts (regardless of structural similarities with the aflatoxins) should induce predominantly G-to-A transitions. Accordingly, we have recently observed that base substitutions induced by the acridine half-mustard ICR-191 in the M13 double-stranded DNA transfection system are predominantly G:C-to-A:T transitions. Here, by transfecting ICR-191-treated M13 AB28 single-stranded DNA into Escherichia coli, we show that base substitutions are predominantly targeted to guanines. Since the N7-adducted-guanine:thymine mispairing is proposed to require N1 deprotonation promoted by the primary N7 lesion, guanine imidazole ring-opening should abolish this mispairing property, and thereby alter the specificity of mutagenesis. Here, we show that the incubation of ICR-191-treated RF DNA at pH 10.5 results in a significant reversal of the specificity of G:C-targeted substitutions such that G-to-T transversions predominated over G-to-A transitions. These data suggest that the ring-opened forms may be processed as classical noninstructional lesions as previously deduced for ring-opened aflatoxin-guanine lesions. These findings raise the intriguing possibility that mispairing by guanine N7 adducts may be a source of induced as well as background mutagenesis.

Full Text

The Full Text of this article is available as a PDF (912.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Lee F. D., Durston W. E. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci U S A. 1973 Mar;70(3):782–786. doi: 10.1073/pnas.70.3.782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett C. B., Luo X., Refolo L. M., Humayun M. Z. Effects of SOS and MucAB functions on reactivation and mutagenesis of M13 replicative form DNA bearing bulky lesions. Mutat Res. 1988 Nov;202(1):223–234. doi: 10.1016/0027-5107(88)90186-8. [DOI] [PubMed] [Google Scholar]
  3. Brouwer J., Adhin M. R., van de Putte P. Effect of pKM101 on cell killing and specificity of mutation induction by cis-diaminedichloroplatinum(II) in Escherichia coli K-12. J Bacteriol. 1983 Dec;156(3):1275–1281. doi: 10.1128/jb.156.3.1275-1281.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burnouf D., Duane M., Fuchs R. P. Spectrum of cisplatin-induced mutations in Escherichia coli. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3758–3762. doi: 10.1073/pnas.84.11.3758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chetsanga C. J., Polidori G., Mainwaring M. Analysis and excision of ring-opened phosphoramide mustard-deoxyguanine adducts in DNA. Cancer Res. 1982 Jul;42(7):2616–2621. [PubMed] [Google Scholar]
  6. Drake J. W., Baltz R. H. The biochemistry of mutagenesis. Annu Rev Biochem. 1976;45:11–37. doi: 10.1146/annurev.bi.45.070176.000303. [DOI] [PubMed] [Google Scholar]
  7. Foster P. L., Eisenstadt E., Miller J. H. Base substitution mutations induced by metabolically activated aflatoxin B1. Proc Natl Acad Sci U S A. 1983 May;80(9):2695–2698. doi: 10.1073/pnas.80.9.2695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Groopman J. D., Cain L. G., Kensler T. W. Aflatoxin exposure in human populations: measurements and relationship to cancer. Crit Rev Toxicol. 1988;19(2):113–145. doi: 10.3109/10408448809014902. [DOI] [PubMed] [Google Scholar]
  9. Hendler S., Fürer E., Srinivasan P. R. Synthesis and chemical properties of monomers and polymers containing 7-methylguanine and an investigation of their substrate or template properties for bacterial deoxyribonucleic acid or ribonucleic acid polymerases. Biochemistry. 1970 Oct 13;9(21):4141–4153. doi: 10.1021/bi00823a017. [DOI] [PubMed] [Google Scholar]
  10. Hertzog P. J., Smith J. R., Garner R. C. Characterisation of the imidazole ring-opened forms of trans-8,9-dihydro-8,9-dihydro-8-(7-guanyl)9-hydroxy aflatoxin B1. Carcinogenesis. 1982;3(6):723–725. doi: 10.1093/carcin/3.6.723. [DOI] [PubMed] [Google Scholar]
  11. Irvin T. R., Wogan G. N. Quantitation of aflatoxin B1 adduction within the ribosomal RNA gene sequences of rat liver DNA. Proc Natl Acad Sci U S A. 1984 Feb;81(3):664–668. doi: 10.1073/pnas.81.3.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jacobsen J. S., Refolo L. M., Conley M. P., Sambamurti K., Humayun M. Z. DNA replication-blocking properties of adducts formed by aflatoxin B1-2,3-dichloride and aflatoxin B1-2,3-oxide. Mutat Res. 1987 Jul;179(1):89–101. doi: 10.1016/0027-5107(87)90044-3. [DOI] [PubMed] [Google Scholar]
  13. LAWLEY P. D., BROOKES P. Acidic dissociation of 7:9-dialkylguanines and its possible relation to mutagenic properties of alkylating agents. Nature. 1961 Dec 16;192:1081–1082. doi: 10.1038/1921081b0. [DOI] [PubMed] [Google Scholar]
  14. LAWLEY P. D., BROOKES P. FURTHER STUDIES ON THE ALKYLATION OF NUCLEIC ACIDS AND THEIR CONSTITUENT NUCLEOTIDES. Biochem J. 1963 Oct;89:127–138. doi: 10.1042/bj0890127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LAWLEY P. D. The relative reactivities of deoxyribonucleotides and of the bases of DNA towards alkylating agents. Biochim Biophys Acta. 1957 Nov;26(2):450–451. doi: 10.1016/0006-3002(57)90042-2. [DOI] [PubMed] [Google Scholar]
  16. Larson K., Sahm J., Shenkar R., Strauss B. Methylation-induced blocks to in vitro DNA replication. Mutat Res. 1985 Jun-Jul;150(1-2):77–84. doi: 10.1016/0027-5107(85)90103-4. [DOI] [PubMed] [Google Scholar]
  17. Lawley P. D. Mutagens as carcinogens: development of current concepts. Mutat Res. 1989 Jul;213(1):3–25. doi: 10.1016/0027-5107(89)90028-6. [DOI] [PubMed] [Google Scholar]
  18. Lin J. K., Miller J. A., Miller E. C. 2,3-Dihydro-2-(guan-7-yl)-3-hydroxy-aflatoxin B1, a major acid hydrolysis product of aflatoxin B1-DNA or -ribosomal RNA adducts formed in hepatic microsome-mediated reactions and in rat liver in vivo. Cancer Res. 1977 Dec;37(12):4430–4438. [PubMed] [Google Scholar]
  19. Loeb L. A. Apurinic sites as mutagenic intermediates. Cell. 1985 Mar;40(3):483–484. doi: 10.1016/0092-8674(85)90191-6. [DOI] [PubMed] [Google Scholar]
  20. Loeb L. A., Preston B. D. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet. 1986;20:201–230. doi: 10.1146/annurev.ge.20.120186.001221. [DOI] [PubMed] [Google Scholar]
  21. Podger D. M., Hall R. M. Induction of the SOS response by ICR191 does not influence frameshift mutagenesis at the hisC3076 marker of Salmonella typhimurium. Mutat Res. 1985 Mar;142(3):87–91. doi: 10.1016/0165-7992(85)90045-4. [DOI] [PubMed] [Google Scholar]
  22. Rabkin S. D., Strauss B. S. A role for DNA polymerase in the specificity of nucleotide incorporation opposite N-acetyl-2-aminofluorene adducts. J Mol Biol. 1984 Sep 25;178(3):569–594. doi: 10.1016/0022-2836(84)90239-0. [DOI] [PubMed] [Google Scholar]
  23. Refolo L. M., Bennett C. B., Humayun M. Z. Mechanisms of frameshift mutagenesis by aflatoxin B1-2,3-dichloride. J Mol Biol. 1987 Feb 20;193(4):609–636. doi: 10.1016/0022-2836(87)90344-5. [DOI] [PubMed] [Google Scholar]
  24. Refolo L. M., Conley M. P., Sambamurti K., Jacobsen J. S., Humayun M. Z. Sequence context effects in DNA replication blocks induced by aflatoxin B1. Proc Natl Acad Sci U S A. 1985 May;82(10):3096–3100. doi: 10.1073/pnas.82.10.3096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sambamurti K., Callahan J., Luo X., Perkins C. P., Jacobsen J. S., Humayun M. Z. Mechanisms of mutagenesis by a bulky DNA lesion at the guanine N7 position. Genetics. 1988 Dec;120(4):863–873. doi: 10.1093/genetics/120.4.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sancar A., Sancar G. B. DNA repair enzymes. Annu Rev Biochem. 1988;57:29–67. doi: 10.1146/annurev.bi.57.070188.000333. [DOI] [PubMed] [Google Scholar]
  27. Setlow R. B. Repair deficient human disorders and cancer. Nature. 1978 Feb 23;271(5647):713–717. doi: 10.1038/271713a0. [DOI] [PubMed] [Google Scholar]
  28. Thomas S. M., MacPhee D. G. Frameshift mutagenesis by 9-aminoacridine and ICR191 in Escherichia coli: effects of uvrB, recA and lexA mutations and of plasmid pKM101. Mutat Res. 1985 Aug;151(1):49–56. doi: 10.1016/0027-5107(85)90181-2. [DOI] [PubMed] [Google Scholar]
  29. Walker G. C. Inducible DNA repair systems. Annu Rev Biochem. 1985;54:425–457. doi: 10.1146/annurev.bi.54.070185.002233. [DOI] [PubMed] [Google Scholar]
  30. Walker G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev. 1984 Mar;48(1):60–93. doi: 10.1128/mr.48.1.60-93.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES