Skip to main content
Genetics logoLink to Genetics
. 1992 Feb;130(2):305–314. doi: 10.1093/genetics/130.2.305

Genetic Interactions among Chlamydomonas Reinhardtii Mutations That Confer Resistance to anti-Microtubule Herbicides

S W James 1, P A Lefebvre 1
PMCID: PMC1204851  PMID: 1311696

Abstract

We previously described two types of genetic interactions among recessive mutations in the APM1 and APM2 loci of Chlamydomonas reinhardtii that may reflect a physical association of the gene products or their involvement in a common structure/process: (1) allele-specific synthetic lethality, and (2) unlinked noncomplementation, or dominant enhancement. To further investigate these interactions, we isolated revertants in which the heat sensitivity caused by the apm2-1 mutation is lost. The heat-insensitive revertants were either fully or partially suppressed for the drug-resistance caused by the apm2-1 allele. In recombination tests the revertants behaved as if the suppressing mutation mapped within the APM2 locus; the partial suppressors of apm2-1 herbicide resistance failed to complement apm2-1, leading to the conclusion that they were likely to be intragenic pseudorevertants. The apm2-1 partial suppressor mutations reversed apm1(-)apm2-1 synthetic lethality in an allele-specific manner with respect both to apm1(-) alleles and apm2-1 suppressor mutations. Those apm1(-) apm2-1(rev) strains that regained viability also regained heat sensitivity characteristic of the original apm2-1 mutation, even though the apm2-1 suppressor strains were fully heat-insensitive. The Hs(+) phenotypes of apm2-1 partial suppressors were also reversed by treatment with the microtubule-stabilizing agent deuterium oxide (D(2)O). In addition to the above interactions, we observed interallelic complementation and phenotypic enhancement of temperature conditionality among apm1(-) alleles. Evidence of a role for the products of the two genes in microtubule-based processes was obtained from studying flagellar assembly in apm1(-) and apm2(-) mutants.

Full Text

The Full Text of this article is available as a PDF (998.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson K. D. Two recessive suppressors of Saccharomyces cerevisiae cho1 that are unlinked but fall in the same complementation group. Genetics. 1985 Sep;111(1):1–6. doi: 10.1093/genetics/111.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bolduc C., Lee V. D., Huang B. Beta-tubulin mutants of the unicellular green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1988 Jan;85(1):131–135. doi: 10.1073/pnas.85.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CRICK F. H., ORGEL L. E. THE THEORY OF INTER-ALLELIC COMPLEMENTATION. J Mol Biol. 1964 Jan;8:161–165. doi: 10.1016/s0022-2836(64)80156-x. [DOI] [PubMed] [Google Scholar]
  4. Dutcher S. K. Genetic properties of linkage group XIX in Chlamydomonas reinhardtii. Basic Life Sci. 1986;40:303–325. doi: 10.1007/978-1-4684-5251-8_24. [DOI] [PubMed] [Google Scholar]
  5. Dutcher S. K., Gibbons W., Inwood W. B. A genetic analysis of suppressors of the PF10 mutation in Chlamydomonas reinhardtii. Genetics. 1988 Dec;120(4):965–976. doi: 10.1093/genetics/120.4.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dutcher S. K., Lux F. G., 3rd Genetic interactions of mutations affecting flagella and basal bodies in Chlamydomonas. Cell Motil Cytoskeleton. 1989;14(1):104–117. doi: 10.1002/cm.970140120. [DOI] [PubMed] [Google Scholar]
  7. Fernández E., Matagne R. F. In vivo complementation analysis of nitrate reductase-deficient mutants in Chlamydomonas reinhardtii. Curr Genet. 1986;10(5):397–403. doi: 10.1007/BF00418413. [DOI] [PubMed] [Google Scholar]
  8. Fuller M. T., Regan C. L., Green L. L., Robertson B., Deuring R., Hays T. S. Interacting genes identify interacting proteins involved in microtubule function in Drosophila. Cell Motil Cytoskeleton. 1989;14(1):128–135. doi: 10.1002/cm.970140122. [DOI] [PubMed] [Google Scholar]
  9. Hays T. S., Deuring R., Robertson B., Prout M., Fuller M. T. Interacting proteins identified by genetic interactions: a missense mutation in alpha-tubulin fails to complement alleles of the testis-specific beta-tubulin gene of Drosophila melanogaster. Mol Cell Biol. 1989 Mar;9(3):875–884. doi: 10.1128/mcb.9.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huffaker T. C., Hoyt M. A., Botstein D. Genetic analysis of the yeast cytoskeleton. Annu Rev Genet. 1987;21:259–284. doi: 10.1146/annurev.ge.21.120187.001355. [DOI] [PubMed] [Google Scholar]
  11. Itoh T. J., Sato H. The effects of deuterium oxide (2H2O) on the polymerization of tubulin in vitro. Biochim Biophys Acta. 1984 Jul 16;800(1):21–27. doi: 10.1016/0304-4165(84)90089-8. [DOI] [PubMed] [Google Scholar]
  12. James S. W., Lefebvre P. A. Isolation and characterization of dominant, pleiotropic drug-resistance mutants in Chlamydomonas reinhardtii. Curr Genet. 1989 Jun;15(6):443–452. doi: 10.1007/BF00376802. [DOI] [PubMed] [Google Scholar]
  13. James S. W., Ranum L. P., Silflow C. D., Lefebvre P. A. Mutants resistant to anti-microtubule herbicides map to a locus on the uni linkage group in Chlamydomonas reinhardtii. Genetics. 1988 Jan;118(1):141–147. doi: 10.1093/genetics/118.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. James S. W., Silflow C. D., Thompson M. D., Ranum L. P., Lefebvre P. A. Extragenic suppression and synthetic lethality among Chlamydomonas reinhardtii mutants resistant to anti-microtubule drugs. Genetics. 1989 Jul;122(3):567–577. doi: 10.1093/genetics/122.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KAPULER A. M., BERNSTEIN H. A molecular model for an enzyme based on a correlation between the genetic and complementation maps of the locus specifying the enzyme. J Mol Biol. 1963 Jun;6:443–451. doi: 10.1016/s0022-2836(63)80056-x. [DOI] [PubMed] [Google Scholar]
  16. LEVINE R. P., EBERSOLD W. T. The genetics and cytology of Chlamydomonas. Annu Rev Microbiol. 1960;14:197–216. doi: 10.1146/annurev.mi.14.100160.001213. [DOI] [PubMed] [Google Scholar]
  17. Lefebvre P. A., Nordstrom S. A., Moulder J. E., Rosenbaum J. L. Flagellar elongation and shortening in Chlamydomonas. IV. Effects of flagellar detachment, regeneration, and resorption on the induction of flagellar protein synthesis. J Cell Biol. 1978 Jul;78(1):8–27. doi: 10.1083/jcb.78.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lefebvre P. A., Rosenbaum J. L. Regulation of the synthesis and assembly of ciliary and flagellar proteins during regeneration. Annu Rev Cell Biol. 1986;2:517–546. doi: 10.1146/annurev.cb.02.110186.002505. [DOI] [PubMed] [Google Scholar]
  19. Ludueńa R. F., Shooter E. M., Wilson L. Structure of the tubulin dimer. J Biol Chem. 1977 Oct 25;252(20):7006–7014. [PubMed] [Google Scholar]
  20. Lux F. G., 3rd, Dutcher S. K. Genetic interactions at the FLA10 locus: suppressors and synthetic phenotypes that affect the cell cycle and flagellar function in Chlamydomonas reinhardtii. Genetics. 1991 Jul;128(3):549–561. doi: 10.1093/genetics/128.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Majumder A. L., Duttagupta S., Goldwasser P., Donahue T. F., Henry S. A. The mechanism of interallelic complementation at the INO1 locus in yeast: immunological analysis of mutants. Mol Gen Genet. 1981;184(3):347–354. doi: 10.1007/BF00352503. [DOI] [PubMed] [Google Scholar]
  22. Matthews K. A., Kaufman T. C. Developmental consequences of mutations in the 84B alpha-tubulin gene of Drosophila melanogaster. Dev Biol. 1987 Jan;119(1):100–114. doi: 10.1016/0012-1606(87)90211-9. [DOI] [PubMed] [Google Scholar]
  23. Oakley B. R., Morris N. R. A beta-tubulin mutation in Aspergillus nidulans that blocks microtubule function without blocking assembly. Cell. 1981 Jun;24(3):837–845. doi: 10.1016/0092-8674(81)90109-4. [DOI] [PubMed] [Google Scholar]
  24. Oakley B. R., Oakley C. E., Rinehart J. E. Conditionally lethal tubA alpha-tubulin mutations in Aspergillus nidulans. Mol Gen Genet. 1987 Jun;208(1-2):135–144. doi: 10.1007/BF00330434. [DOI] [PubMed] [Google Scholar]
  25. Quader H., Filner P. The action of antimitotic herbicides on flagellar regeneration in Chlamydomonas reinhardtii: a comparison with the action of colchicine. Eur J Cell Biol. 1980 Aug;21(3):301–304. [PubMed] [Google Scholar]
  26. Ramanis Z., Luck D. J. Loci affecting flagellar assembly and function map to an unusual linkage group in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1986 Jan;83(2):423–426. doi: 10.1073/pnas.83.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Regan C. L., Fuller M. T. Interacting genes that affect microtubule function in Drosophila melanogaster: two classes of mutation revert the failure to complement between haync2 and mutations in tubulin genes. Genetics. 1990 May;125(1):77–90. doi: 10.1093/genetics/125.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rosenbaum J. L., Child F. M. Flagellar regeneration in protozoan flagellates. J Cell Biol. 1967 Jul;34(1):345–364. doi: 10.1083/jcb.34.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. SAGER R., GRANICK S. Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci. 1953 Oct 14;56(5):831–838. doi: 10.1111/j.1749-6632.1953.tb30261.x. [DOI] [PubMed] [Google Scholar]
  30. Schibler M. J., Huang B. The colR4 and colR15 beta-tubulin mutations in Chlamydomonas reinhardtii confer altered sensitivities to microtubule inhibitors and herbicides by enhancing microtubule stability. J Cell Biol. 1991 May;113(3):605–614. doi: 10.1083/jcb.113.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stearns T., Botstein D. Unlinked noncomplementation: isolation of new conditional-lethal mutations in each of the tubulin genes of Saccharomyces cerevisiae. Genetics. 1988 Jun;119(2):249–260. doi: 10.1093/genetics/119.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES