Abstract
Natural populations of Drosophila mercatorum are polymorphic for a phenotypic syndrome known as abnormal abdomen (aa). This syndrome is characterized by a slow-down in egg-to-adult developmental time, retention of juvenile abdominal cuticle in the adult, increased early female fecundity, and decreased adult longevity. Previous studies revealed that the expression of this syndrome in females is controlled by two closely linked X chromosomal elements: the occurrence of an R1 insert in a third or more of the X-linked 28S ribosomal genes (rDNA), and the failure of replicative selection favoring uninserted 28S genes in larval polytene tissues. The expression of this syndrome in males in a laboratory stock was associated with the deletion of the rDNA normally found on the Y chromosome. In this paper we quantify the levels of genetic variation for these three components in a natural population of Drosophila mercatorum found near Kamuela, Hawaii. Extensive variation is found in the natural population for both of the X-linked components. Moreover, there is a significant association between variation in the proportion of R1 inserted 28S genes with allelic variation at the underreplication (ur) locus such that both of the necessary components for aa expression in females tend to cosegregate in the natural population. Accordingly, these two closely linked X chromosomal elements are behaving as a supergene in the natural population. Because of this association, we do not believe the R1 insert to be actively transposing to an appreciable extent. The Y chromosomes extracted from nature are also polymorphic, with 16% of the Ys lacking the Y-specific rDNA marker. The absence of this marker is significantly associated with the expression of aa in males. Hence, all three of the major genetic determinants of the abnormal abdomen syndrome are polymorphic in this natural population.
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Back E., Van Meir E., Müller F., Schaller D., Neuhaus H., Aeby P., Tobler H. Intervening sequences in the ribosomal RNA genes of Ascaris lumbricoides: DNA sequences at junctions and genomic organization. EMBO J. 1984 Nov;3(11):2523–2529. doi: 10.1002/j.1460-2075.1984.tb02167.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beckingham K., Rubacha A. Different chromatin states of the intron- and type 1 intron+ rRNA genes of Calliphora erythrocephala. Chromosoma. 1984;90(4):311–316. doi: 10.1007/BF00287040. [DOI] [PubMed] [Google Scholar]
- Beckingham K., White R. The ribosomal DNA of Calliphora erythrocephala; and analysis of hybrid plasmids containing ribosomal DNA. J Mol Biol. 1980 Mar 15;137(4):349–373. doi: 10.1016/0022-2836(80)90162-x. [DOI] [PubMed] [Google Scholar]
- Birnstiel M. L., Chipchase M., Speirs J. The ribosomal RNA cistrons. Prog Nucleic Acid Res Mol Biol. 1971;11:351–389. doi: 10.1016/s0079-6603(08)60332-3. [DOI] [PubMed] [Google Scholar]
- Burke W. D., Calalang C. C., Eickbush T. H. The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme. Mol Cell Biol. 1987 Jun;7(6):2221–2230. doi: 10.1128/mcb.7.6.2221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawid I. B., Wellauer P. K., Long E. O. Ribosomal DNA in Drosophila melanogaster. I. Isolation and characterization of cloned fragments. J Mol Biol. 1978 Dec 25;126(4):749–768. doi: 10.1016/0022-2836(78)90018-9. [DOI] [PubMed] [Google Scholar]
- DeSalle R., Slightom J., Zimmer E. The molecular through ecological genetics of abnormal abdomen. II. Ribosomal DNA polymorphism is associated with the abnormal abdomen syndrome in Drosophila mercatorum. Genetics. 1986 Apr;112(4):861–875. doi: 10.1093/genetics/112.4.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeSalle R., Templeton A. R. The molecular through ecological genetics of abnormal abdomen. III. Tissue-specific differential replication of ribosomal genes modulates the abnormal abdomen phenotype in Drosophila mercatorum. Genetics. 1986 Apr;112(4):877–886. doi: 10.1093/genetics/112.4.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeSalle R., Templeton A., Mori I., Pletscher S., Johnston J. S. Temporal and spatial heterogeneity of mtDNA polymorphisms in natural populations of Drosophila mercatorum. Genetics. 1987 Jun;116(2):215–223. doi: 10.1093/genetics/116.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eickbush T. H., Robins B. Bombyx mori 28S ribosomal genes contain insertion elements similar to the Type I and II elements of Drosophila melanogaster. EMBO J. 1985 Sep;4(9):2281–2285. doi: 10.1002/j.1460-2075.1985.tb03927.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eissenberg J. C. Position effect variegation in Drosophila: towards a genetics of chromatin assembly. Bioessays. 1989 Jul;11(1):14–17. doi: 10.1002/bies.950110105. [DOI] [PubMed] [Google Scholar]
- Frankham R. Adding the heterochromatic YL arm to an X chromosome reduces reproductive fitnesses in Drosophila melanogaster: implications for the evolution of rDNA, heterochromatin, and reproductive isolation. Genome. 1990 Jun;33(3):340–347. doi: 10.1139/g90-053. [DOI] [PubMed] [Google Scholar]
- Gillings M. R., Frankham R., Speirs J., Whalley M. X-Y Exchange and the Coevolution of the X and Y Rdna Arrays in Drosophila melanogaster. Genetics. 1987 Jun;116(2):241–251. doi: 10.1093/genetics/116.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodrich-Young C., Krider H. M. Nucleolar dominance and replicative dominance in Drosophila interspecific hybrids. Genetics. 1989 Oct;123(2):349–358. doi: 10.1093/genetics/123.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Indik Z. K., Tartof K. D. Long spacers among ribosomal genes of Drosophila melanogaster. Nature. 1980 Apr 3;284(5755):477–479. doi: 10.1038/284477a0. [DOI] [PubMed] [Google Scholar]
- Jakubczak J. L., Burke W. D., Eickbush T. H. Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3295–3299. doi: 10.1073/pnas.88.8.3295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jakubczak J. L., Xiong Y., Eickbush T. H. Type I (R1) and type II (R2) ribosomal DNA insertions of Drosophila melanogaster are retrotransposable elements closely related to those of Bombyx mori. J Mol Biol. 1990 Mar 5;212(1):37–52. doi: 10.1016/0022-2836(90)90303-4. [DOI] [PubMed] [Google Scholar]
- Kohorn B. D., Rae P. M. Accurate transcription of truncated ribosomal DNA templates in a Drosophila cell-free system. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1501–1505. doi: 10.1073/pnas.79.5.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lecanidou R., Eickbush T. H., Kafatos F. C. Ribosomal DNA genes of Bombyx mori: a minor fraction of the repeating units contain insertions. Nucleic Acids Res. 1984 Jun 11;12(11):4703–4713. doi: 10.1093/nar/12.11.4703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Long E. O., Collins M., Kiefer B. I., Dawid I. B. Expression of the ribosomal DNA insertions in bobbed mutants of Drosophila melanogaster. Mol Gen Genet. 1981;182(3):377–384. doi: 10.1007/BF00293925. [DOI] [PubMed] [Google Scholar]
- Long E. O., Dawid I. B. Expression of ribosomal DNA insertions in Drosophila melanogaster. Cell. 1979 Dec;18(4):1185–1196. doi: 10.1016/0092-8674(79)90231-9. [DOI] [PubMed] [Google Scholar]
- Lyckegaard E. M., Clark A. G. Evolution of ribosomal RNA gene copy number on the sex chromosomes of Drosophila melanogaster. Mol Biol Evol. 1991 Jul;8(4):458–474. doi: 10.1093/oxfordjournals.molbev.a040664. [DOI] [PubMed] [Google Scholar]
- Lyckegaard E. M., Clark A. G. Ribosomal DNA and Stellate gene copy number variation on the Y chromosome of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1944–1948. doi: 10.1073/pnas.86.6.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Makni M., Marrakchi M., Prud'homme N. The occurrence of long ribosomal transcripts homologous to type I insertions in bobbed mutants of Drosophila melanogaster. Genet Res. 1989 Oct;54(2):127–135. doi: 10.1017/s0016672300028494. [DOI] [PubMed] [Google Scholar]
- Mandal R. K., Dawid I. B. The nucleotide sequence at the transcription termination site of ribosomal RNA in Drosophila melanogaster. Nucleic Acids Res. 1981 Apr 24;9(8):1801–1811. doi: 10.1093/nar/9.8.1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta T., Dover G. A. Population genetics of multigene families that are dispersed into two or more chromosomes. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4079–4083. doi: 10.1073/pnas.80.13.4079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paskewitz S. M., Collins F. H. Site-specific ribosomal DNA insertion elements in Anopheles gambiae and A. arabiensis: nucleotide sequence of gene-element boundaries. Nucleic Acids Res. 1989 Oct 25;17(20):8125–8133. doi: 10.1093/nar/17.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roiha H., Glover D. M. Chracterisation of complete type II insertions in cloned segments of ribosomal DNA from Drosophila melanogaster. J Mol Biol. 1980 Jun 25;140(2):341–355. doi: 10.1016/0022-2836(80)90110-2. [DOI] [PubMed] [Google Scholar]
- Smith V. L., Beckingham K. The intron boundaries and flanking rRNA coding sequences of Calliphora erythrocephala rDNA. Nucleic Acids Res. 1984 Feb 10;12(3):1707–1724. doi: 10.1093/nar/12.3.1707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Southern E. Gel electrophoresis of restriction fragments. Methods Enzymol. 1979;68:152–176. doi: 10.1016/0076-6879(79)68011-4. [DOI] [PubMed] [Google Scholar]
- Spradling A. Gene amplification in dipteran chromosomes. Results Probl Cell Differ. 1987;14:199–212. doi: 10.1007/978-3-540-47783-9_12. [DOI] [PubMed] [Google Scholar]
- Spradling A., Orr-Weaver T. Regulation of DNA replication during Drosophila development. Annu Rev Genet. 1987;21:373–403. doi: 10.1146/annurev.ge.21.120187.002105. [DOI] [PubMed] [Google Scholar]
- Templeton A. R., Crease T. J., Shah F. The molecular through ecological genetics of abnormal abdomen in Drosophila mercatorum. I. Basic genetics. Genetics. 1985 Dec;111(4):805–818. doi: 10.1093/genetics/111.4.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Templeton A. R., Hollocher H., Lawler S., Johnston J. S. Natural selection and ribosomal DNA in Drosophila. Genome. 1989;31(1):296–303. doi: 10.1139/g89-047. [DOI] [PubMed] [Google Scholar]
- Templeton A. R. The Parthenogenetic Capacities and Genetic Structures of Sympatric Populations of DROSOPHILA MERCATORUM and DROSOPHILA HYDEI. Genetics. 1979 Aug;92(4):1283–1293. doi: 10.1093/genetics/92.4.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terracol R., Prud'homme N. Differential elimination of rDNA genes in bobbed mutants of Drosophila melanogaster. Mol Cell Biol. 1986 Apr;6(4):1023–1031. doi: 10.1128/mcb.6.4.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wellauer P. K., Dawid I. B. Ribosomal DNA in Drosophila melanogaster. II. Heteroduplex mapping of cloned and uncloned rDNA. J Mol Biol. 1978 Dec 25;126(4):769–782. doi: 10.1016/0022-2836(78)90019-0. [DOI] [PubMed] [Google Scholar]
- Wellauer P. K., Dawid I. B., Tartof K. D. X and Y chromosomal ribosomal DNA of Drosophila: comparison of spacers and insertions. Cell. 1978 Jun;14(2):269–278. doi: 10.1016/0092-8674(78)90113-7. [DOI] [PubMed] [Google Scholar]
- White R. L., Hogness D. S. R loop mapping of the 18S and 28S sequences in the long and short repeating units of Drosophila melanogaster rDNA. Cell. 1977 Feb;10(2):177–192. doi: 10.1016/0092-8674(77)90213-6. [DOI] [PubMed] [Google Scholar]
- Williams S. M., DeSalle R., Strobeck C. Homogenization of geographical variants at the nontranscribed spacer of rDNA in Drosophila mercatorum. Mol Biol Evol. 1985 Jul;2(4):338–346. doi: 10.1093/oxfordjournals.molbev.a040355. [DOI] [PubMed] [Google Scholar]
- Williams S. M., Furnier G. R., Fuog E., Strobeck C. Evolution of the ribosomal DNA spacers of Drosophila melanogaster: different patterns of variation on X and Y chromosomes. Genetics. 1987 Jun;116(2):225–232. doi: 10.1093/genetics/116.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams S. M. The opportunity for natural selection on multigene families. Genetics. 1990 Feb;124(2):439–441. doi: 10.1093/genetics/124.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiong Y. E., Eickbush T. H. Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm. Cell. 1988 Oct 21;55(2):235–246. doi: 10.1016/0092-8674(88)90046-3. [DOI] [PubMed] [Google Scholar]
- Xiong Y., Burke W. D., Jakubczak J. L., Eickbush T. H. Ribosomal DNA insertion elements R1Bm and R2Bm can transpose in a sequence specific manner to locations outside the 28S genes. Nucleic Acids Res. 1988 Nov 25;16(22):10561–10573. doi: 10.1093/nar/16.22.10561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiong Y., Eickbush T. H. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons. Mol Cell Biol. 1988 Jan;8(1):114–123. doi: 10.1128/mcb.8.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]