Skip to main content
Genetics logoLink to Genetics
. 1992 Mar;130(3):597–612. doi: 10.1093/genetics/130.3.597

Evidence of a Dual Function in Fl(2)d, a Gene Needed for Sex-Lethal Expression in Drosophila Melanogaster

B Granadino 1, A S Juan 1, P Santamaria 1, L Sanchez 1
PMCID: PMC1204876  PMID: 1551580

Abstract

In Drosophila melanogaster, the female sexual development of the soma and the germline requires the activity of the gene Sxl. The somatic cells need the function of the gene fl(2)d to follow the female developmental pathway, due to its involvement in the female-specific splicing of Sxl RNA. Here we report the analysis of both fl(2)d(1) and fl(2)d(2) mutations: (1) fl(2)d(1) is a temperature-sensitive mutation lethal in females and semilethal in males; (2) fl(2)d(2) is lethal in both sexes; (3) the fl(2)d(1)/fl(2)d(2) constitution is temperature-sensitive and lethal in females, while semilethal in males. The temperature-sensitive period of fl(2)d(1) in females expands the whole development. Sxl(M1) partially suppresses the lethality of fl(2)d(1) homozygous females and that of fl(2)d(1)/fl(2)d(2) constitution, whereas it does not suppress the lethality of fl(2)d(2) homozygous females. The addition of extra Sxl(+) copies does not increase the suppression effect of Sxl(M1). The fl(2)d(1) mutation in homozygosis and the fl(2)d(1)/fl(2)d(2) constitution, but not the fl(2)d(2) in homozygosis, partially suppress the lethality of Sxl(M1) males. This suppression is not prevented by the addition of extra Sxl(+) copies. The semilethality of both fl(2)d(1) and fl(2)d(1)/fl(2)d(2) males, and the lethality of fl(2)d(2) males, is independent of Sxl function. There is no female synergistic lethality between mutations at fl(2)d and neither at sc or da. However, the female synergistic lethality between mutations at Sxl and either sc or da is increased by fl(2)d mutations. We have analyzed the effect of the fl(2)d mutations on the germline development of both females and males. For that purpose, we carried out the clonal analysis of fl(2)d(1) in the germline. In addition, pole cells homozygous for fl(2)d(2) were transplanted into wild-type host embryos, and we checked whether the mutant pole cells were capable of forming functional gametes. The results indicated that fl(2)d mutant germ cells cannot give rise to functional oocytes, while they can form functional sperm. Moreover, Sxl(M1) suppresses the sterility of the fl(2)d(1) homozygous females developing at the permissive temperature. Thus, with respect to the development of the germline the fl(2)d mutations mimic the behavior of loss-of-function mutations at the gene Sxl. Females double heterozygous for fl(2)d and snf(1621) are fully viable and fertile. fl(2)d(2) in heterozygosis partially suppresses the phenotype of female germ cells homozygous for snf(1621); however, this is not the case with the fl(2)d(1) mutation. The fl(2)d mutations partially suppress the phenotype of the female germ cells homozygous for ovo(D1rS1). We conclude that the gene fl(2)d has a dual function: a female-specific function involved in the splicing of Sxl RNA and a non-sex-specific function. Furthermore, the gene fl(2)d is required in the female germline for Sxl expression.

Full Text

The Full Text of this article is available as a PDF (5.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachiller D., Sánchez L. Production of X0 clones in XX females of Drosophila. Genet Res. 1991 Feb;57(1):23–28. doi: 10.1017/s0016672300028998. [DOI] [PubMed] [Google Scholar]
  2. Baker B. S., Belote J. M. Sex determination and dosage compensation in Drosophila melanogaster. Annu Rev Genet. 1983;17:345–393. doi: 10.1146/annurev.ge.17.120183.002021. [DOI] [PubMed] [Google Scholar]
  3. Bell L. R., Maine E. M., Schedl P., Cline T. W. Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA binding proteins. Cell. 1988 Dec 23;55(6):1037–1046. doi: 10.1016/0092-8674(88)90248-6. [DOI] [PubMed] [Google Scholar]
  4. Belote J. M., Lucchesi J. C. Control of X chromosome transcription by the maleless gene in Drosophila. Nature. 1980 Jun 19;285(5766):573–575. doi: 10.1038/285573a0. [DOI] [PubMed] [Google Scholar]
  5. Belote J. M. Male-Specific Lethal Mutations of DROSOPHILA MELANOGASTER . II. Parameters of Gene Action during Male Development. Genetics. 1983 Dec;105(4):881–896. doi: 10.1093/genetics/105.4.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cline T. W. A female-specific lethal lesion in an X-linked positive regulator of the Drosophila sex determination gene, Sex-lethal. Genetics. 1986 Jul;113(3):641–663. doi: 10.1093/genetics/113.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cline T. W. A sex-specific, temperature-sensitive maternal effect of the daughterless mutation of Drosophila melanogaster. Genetics. 1976 Dec;84(4):723–742. doi: 10.1093/genetics/84.4.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cline T. W. Autoregulatory functioning of a Drosophila gene product that establish es and maintains the sexually determined state. Genetics. 1984 Jun;107(2):231–277. doi: 10.1093/genetics/107.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cline T. W. Maternal and zygotic sex-specific gene interactions in Drosophila melanogaster. Genetics. 1980 Dec;96(4):903–926. doi: 10.1093/genetics/96.4.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cline T. W. Two closely linked mutations in Drosophila melanogaster that are lethal to opposite sexes and interact with daughterless. Genetics. 1978 Dec;90(4):683–698. doi: 10.1093/genetics/90.4.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Erickson J. W., Cline T. W. Molecular nature of the Drosophila sex determination signal and its link to neurogenesis. Science. 1991 Mar 1;251(4997):1071–1074. doi: 10.1126/science.1900130. [DOI] [PubMed] [Google Scholar]
  12. Granadino B., Campuzano S., Sánchez L. The Drosophila melanogaster fl(2)d gene is needed for the female-specific splicing of Sex-lethal RNA. EMBO J. 1990 Aug;9(8):2597–2602. doi: 10.1002/j.1460-2075.1990.tb07441.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lehmann R., Nüsslein-Volhard C. Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila. Cell. 1986 Oct 10;47(1):141–152. doi: 10.1016/0092-8674(86)90375-2. [DOI] [PubMed] [Google Scholar]
  14. Lucchesi J. C., Skripsky T. The link between dosage compensation and sex differentiation in Drosophila melanogaster. Chromosoma. 1981;82(2):217–227. doi: 10.1007/BF00286106. [DOI] [PubMed] [Google Scholar]
  15. MEYER G. F., HESS O., BEERMANN W. [Phase specific function structure in spermatocyte nuclei of Drosophila melanogaster and their dependence of Y chromosomes]. Chromosoma. 1961;12:676–716. doi: 10.1007/BF00328946. [DOI] [PubMed] [Google Scholar]
  16. Maine E. M., Salz H. K., Cline T. W., Schedl P. The Sex-lethal gene of Drosophila: DNA alterations associated with sex-specific lethal mutations. Cell. 1985 Dec;43(2 Pt 1):521–529. doi: 10.1016/0092-8674(85)90181-3. [DOI] [PubMed] [Google Scholar]
  17. Male O., Zazgornik J., Schmidt P., Kopsa H. Vergleichende Untersuchungen über den Aussagewert der Candidaserologie nach Nierentransplantation. Wien Klin Wochenschr. 1979 Mar 2;91(5):170–173. [PubMed] [Google Scholar]
  18. Nöthiger R., Jonglez M., Leuthold M., Meier-Gerschwiler P., Weber T. Sex determination in the germ line of Drosophila depends on genetic signals and inductive somatic factors. Development. 1989 Nov;107(3):505–518. doi: 10.1242/dev.107.3.505. [DOI] [PubMed] [Google Scholar]
  19. Oliver B., Pauli D., Mahowald A. P. Genetic evidence that the ovo locus is involved in Drosophila germ line sex determination. Genetics. 1990 Jul;125(3):535–550. doi: 10.1093/genetics/125.3.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Oliver B., Perrimon N., Mahowald A. P. Genetic evidence that the sans fille locus is involved in Drosophila sex determination. Genetics. 1988 Sep;120(1):159–171. doi: 10.1093/genetics/120.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Oliver B., Perrimon N., Mahowald A. P. The ovo locus is required for sex-specific germ line maintenance in Drosophila. Genes Dev. 1987 Nov;1(9):913–923. doi: 10.1101/gad.1.9.913. [DOI] [PubMed] [Google Scholar]
  22. Parkhurst S. M., Bopp D., Ish-Horowicz D. X:A ratio, the primary sex-determining signal in Drosophila, is transduced by helix-loop-helix proteins. Cell. 1990 Dec 21;63(6):1179–1191. doi: 10.1016/0092-8674(90)90414-a. [DOI] [PubMed] [Google Scholar]
  23. SEIDEL S. EXPERIMENTELLE UNTERSUCHUNGEN UEBER DIE GRUNDLAGEN DER STERILITAET VON TRANSFORMER- (TRA) MAENNCHEN BEI DROSOPHILA MELANOGASTER. Z Vererbungsl. 1963 Nov 21;94:217–241. [PubMed] [Google Scholar]
  24. Salz H. K., Cline T. W., Schedl P. Functional changes associated with structural alterations induced by mobilization of a P element inserted in the Sex-lethal gene of Drosophila. Genetics. 1987 Oct;117(2):221–231. doi: 10.1093/genetics/117.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Scherer G., Tschudi C., Perera J., Delius H., Pirrotta V. B104, a new dispersed repeated gene family in Drosophila melanogaster and its analogies with retroviruses. J Mol Biol. 1982 May 25;157(3):435–451. doi: 10.1016/0022-2836(82)90470-3. [DOI] [PubMed] [Google Scholar]
  26. Steinmann-Zwicky M. Sex determination in Drosophila: the X-chromosomal gene liz is required for Sxl activity. EMBO J. 1988 Dec 1;7(12):3889–3898. doi: 10.1002/j.1460-2075.1988.tb03275.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sánchez L., Nöthiger R. Sex determination and dosage compensation in Drosophila melanogaster: production of male clones in XX females. EMBO J. 1983;2(4):485–491. doi: 10.1002/j.1460-2075.1983.tb01451.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Torres M., Sánchez L. The sisterless-b function of the Drosophila gene scute is restricted to the stage when the X:A ratio determines the activity of Sex-lethal. Development. 1991 Oct;113(2):715–722. doi: 10.1242/dev.113.2.715. [DOI] [PubMed] [Google Scholar]
  29. Uenoyama T., Uchida S., Fukunaga A., Oishi K. Studies on the sex-specific lethals of Drosophila melanogaster. IV. Gynandromorph analysis of three male-specific lethals, mle, msl-2(27) and mle(3)132. Genetics. 1982 Oct;102(2):223–231. doi: 10.1093/genetics/102.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wieschaus E. A combined genetic and mosaic approach to the study of oogenesis in Drosophila. Basic Life Sci. 1980;16:85–94. doi: 10.1007/978-1-4684-7968-3_7. [DOI] [PubMed] [Google Scholar]
  31. Yarger R. J., King R. C. The phenogenetics of a temperature sensitive, autosomal dominant, female sterile gene in Drosophila melanogaster. Dev Biol. 1971 Feb;24(2):166–177. doi: 10.1016/0012-1606(71)90093-5. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES