Abstract
The Drosophila mei-S332 gene acts to maintain sister-chromatid cohesion before anaphase II of meiosis in both males and females. By isolating and analyzing seven new alleles and a deficiency uncovering the mei-S332 gene we have demonstrated that the onset of the requirement for mei-S332 is not until late anaphase I. All of our alleles result primarily in equational (meiosis II) nondisjunction with low amounts of reductional (meiosis I) nondisjunction. Cytological analysis revealed that sister chromatids frequently separate in late anaphase I in these mutants. Since the sister chromatids remain associated until late in the first division, chromosomes segregate normally during meiosis I, and the genetic consequences of premature sister-chromatid dissociation are seen as nondisjunction in meiosis II. The late onset of mei-S332 action demonstrated by the mutations was not a consequence of residual gene function because two strong, and possibly null, alleles give predominantly equational nondisjunction both as homozygotes and in trans to a deficiency. mei-S332 is not required until after metaphase I, when the kinetochore differentiates from a single hemispherical kinetochore jointly organized by the sister chromatids into two distinct sister kinetochores. Therefore, we propose that the mei-S322 product acts to hold the doubled kinetochore together until anaphase II. All of the alleles are fully viable when in trans to a deficiency, thus mei-S332 is not essential for mitosis. Four of the alleles show an unexpected sex specificity.
Full Text
The Full Text of this article is available as a PDF (3.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carlson J. G. Mitotic Behavior of Induced Chromosomal Fragments Lacking Spindle Attachments in the Neuroblasts of the Grasshopper. Proc Natl Acad Sci U S A. 1938 Nov;24(11):500–507. doi: 10.1073/pnas.24.11.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke L., Baum M. P. Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences. Mol Cell Biol. 1990 May;10(5):1863–1872. doi: 10.1128/mcb.10.5.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cumberledge S., Carbon J. Mutational analysis of meiotic and mitotic centromere function in Saccharomyces cerevisiae. Genetics. 1987 Oct;117(2):203–212. doi: 10.1093/genetics/117.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis B. K. Genetic analysis of a meiotic mutant resulting in precocious sister-centromere separation in Drosophila melanogaster. Mol Gen Genet. 1971;113(3):251–272. doi: 10.1007/BF00339546. [DOI] [PubMed] [Google Scholar]
- Gaudet A., Fitzgerald-Hayes M. Mutations in CEN3 cause aberrant chromosome segregation during meiosis in Saccharomyces cerevisiae. Genetics. 1989 Mar;121(3):477–489. doi: 10.1093/genetics/121.3.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein L. S. Kinetochore structure and its role in chromosome orientation during the first meiotic division in male D. melanogaster. Cell. 1981 Sep;25(3):591–602. doi: 10.1016/0092-8674(81)90167-7. [DOI] [PubMed] [Google Scholar]
- Hall J. C. Chromosome segregation influenced by two alleles of the meiotic mutant c(3)G in Drosophila melanogaster. Genetics. 1972 Jul;71(3):367–400. doi: 10.1093/genetics/71.3.367. [DOI] [PubMed] [Google Scholar]
- Koshland D., Hartwell L. H. The structure of sister minichromosome DNA before anaphase in Saccharomyces cerevisiae. Science. 1987 Dec 18;238(4834):1713–1716. doi: 10.1126/science.3317838. [DOI] [PubMed] [Google Scholar]
- Levis R., Hazelrigg T., Rubin G. M. Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science. 1985 Aug 9;229(4713):558–561. doi: 10.1126/science.2992080. [DOI] [PubMed] [Google Scholar]
- Maguire M. P. Sister chromatid cohesiveness: vital function, obscure mechanism. Biochem Cell Biol. 1990 Nov;68(11):1231–1242. doi: 10.1139/o90-183. [DOI] [PubMed] [Google Scholar]
- Mason J. M. Orientation disruptor (ord): a recombination-defective and disjunction-defective meiotic mutant in Drosophila melanogaster. Genetics. 1976 Nov;84(3):545–572. doi: 10.1093/genetics/84.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray A. W., Szostak J. W. Chromosome segregation in mitosis and meiosis. Annu Rev Cell Biol. 1985;1:289–315. doi: 10.1146/annurev.cb.01.110185.001445. [DOI] [PubMed] [Google Scholar]
- Rockmill B., Roeder G. S. Meiosis in asynaptic yeast. Genetics. 1990 Nov;126(3):563–574. doi: 10.1093/genetics/126.3.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandler L., Lindsley D. L., Nicoletti B., Trippa G. Mutants affecting meiosis in natural populations of Drosophila melanogaster. Genetics. 1968 Nov;60(3):525–558. doi: 10.1093/genetics/60.3.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zitron A. E., Hawley R. S. The genetic analysis of distributive segregation in Drosophila melanogaster. I. Isolation and characterization of Aberrant X segregation (Axs), a mutation defective in chromosome partner choice. Genetics. 1989 Aug;122(4):801–821. doi: 10.1093/genetics/122.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]