Abstract
There are several unsolved problems concerning the model of nearly neutral mutations. One is the interaction of subdivided population structure and weak selection that spatially fluctuates. The model of nearly neutral mutations whose selection coefficient spatially fluctuates has been studied by adopting the island model with periodic extinction-recolonization. Both the number of colonies and the migration rate play significant roles in determining mutants' behavior, and selection is ineffective when the extinction-recolonization is frequent with low migration rate. In summary, the number of mutant substitutions decreases and the polymorphism increases by increasing the total population size, and/or decreasing the extinction-recolonization rate. However, by increasing the total size of the population, the mutant substitution rate does not become as low when compared with that in panmictic populations, because of the extinction-recolonization, especially when the migration rate is limited. It is also found that the model satisfactorily explains the contrasting patterns of molecular polymorphisms observed in sibling species of Drosophila, including heterozygosity, proportion of polymorphism and fixation index.
Full Text
The Full Text of this article is available as a PDF (605.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aquadro C. F., Lado K. M., Noon W. A. The rosy region of Drosophila melanogaster and Drosophila simulans. I. Contrasting levels of naturally occurring DNA restriction map variation and divergence. Genetics. 1988 Aug;119(4):875–888. doi: 10.1093/genetics/119.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crow J. F., Aoki K. Group selection for a polygenic behavioral trait: a differential proliferation model. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2628–2631. doi: 10.1073/pnas.79.8.2628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dykhuizen D., Hartl D. L. Selective neutrality of 6PGD allozymes in E. coli and the effects of genetic background. Genetics. 1980 Dec;96(4):801–817. doi: 10.1093/genetics/96.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foley P. Molecular clock rates at loci under stabilizing selection. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7996–8000. doi: 10.1073/pnas.84.22.7996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M. Model of effectively neutral mutations in which selective constraint is incorporated. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3440–3444. doi: 10.1073/pnas.76.7.3440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta T. Slightly deleterious mutant substitutions in evolution. Nature. 1973 Nov 9;246(5428):96–98. doi: 10.1038/246096a0. [DOI] [PubMed] [Google Scholar]
- Sawyer S. A., Dykhuizen D. E., Hartl D. L. Confidence interval for the number of selectively neutral amino acid polymorphisms. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6225–6228. doi: 10.1073/pnas.84.17.6225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh R. S. Population genetics and evolution of species related to Drosophila melanogaster. Annu Rev Genet. 1989;23:425–453. doi: 10.1146/annurev.ge.23.120189.002233. [DOI] [PubMed] [Google Scholar]
- Tachida H. A study on a nearly neutral mutation model in finite populations. Genetics. 1991 May;128(1):183–192. doi: 10.1093/genetics/128.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]