Skip to main content
Genetics logoLink to Genetics
. 1992 May;131(1):163–173. doi: 10.1093/genetics/131.1.163

Global Population Genetic Structure and Male-Mediated Gene Flow in the Green Turtle (Chelonia Mydas): RFLP Analyses of Anonymous Nuclear Loci

S A Karl 1, B W Bowen 1, J C Avise 1
PMCID: PMC1204950  PMID: 1350555

Abstract

We introduce an approach for the analysis of Mendelian polymorphisms in nuclear DNA (nDNA), using restriction fragment patterns from anonymous single-copy regions amplified by the polymerase chain reaction, and apply this method to the elucidation of population structure and gene flow in the endangered green turtle, Chelonia mydas. Seven anonymous clones isolated from a total cell DNA library were sequenced to generate primers for the amplification of nDNA fragments. Nine individuals were screened for restriction site polymorphisms at these seven loci, using 40 endonucleases. Two loci were monomorphic, while the remainder exhibited a total of nine polymorphic restriction sites and three size variants (reflecting 600-base pair (bp) and 20-bp deletions and a 20-bp insertion). A total of 256 turtle specimens from 15 nesting populations worldwide were then scored for these polymorphisms. Genotypic proportions within populations were in accord with Hardy-Weinberg expectations. Strong linkage disequilibrium observed among polymorphic sites within loci enabled multisite haplotype assignments. Estimates of the standardized variance in haplotype frequency among global collections (F(ST) = 0.17), within the Atlantic-Mediterranean (F(ST) = 0.13), and within the Indian-Pacific (F(ST) = 0.13), revealed a moderate degree of population substructure. Although a previous study concluded that nesting populations appear to be highly structured with respect to female (mitochondrial DNA) lineages, estimates of Nm based on nDNA data from this study indicate moderate rates of male-mediated gene flow. A positive relationship between genetic similarity and geographic proximity suggests historical connections and/or contemporary gene flow between particular rookery populations, likely via matings on overlapping feeding grounds, migration corridors or nonnatal rookeries.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Botstein D., White R. L., Skolnick M., Davis R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980 May;32(3):314–331. [PMC free article] [PubMed] [Google Scholar]
  2. Bowen B. W., Meylan A. B., Avise J. C. An odyssey of the green sea turtle: Ascension Island revisited. Proc Natl Acad Sci U S A. 1989 Jan;86(2):573–576. doi: 10.1073/pnas.86.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown W. M., George M., Jr, Wilson A. C. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1967–1971. doi: 10.1073/pnas.76.4.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Castle A. J., Horgen P. A., Anderson J. B. Restriction fragment length polymorphisms in the mushrooms Agaricus brunnescens and Agaricus bitorquis. Appl Environ Microbiol. 1987 Apr;53(4):816–822. doi: 10.1128/aem.53.4.816-822.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hall H. G. Parental analysis of introgressive hybridization between African and European honeybees using nuclear DNA RFLPs. Genetics. 1990 Jul;125(3):611–621. doi: 10.1093/genetics/125.3.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Herrmann B. G., Frischauf A. M. Isolation of genomic DNA. Methods Enzymol. 1987;152:180–183. doi: 10.1016/0076-6879(87)52018-3. [DOI] [PubMed] [Google Scholar]
  8. Horn G. T., Richards B., Klinger K. W. Amplification of a highly polymorphic VNTR segment by the polymerase chain reaction. Nucleic Acids Res. 1989 Mar 11;17(5):2140–2140. doi: 10.1093/nar/17.5.2140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keim P., Paige K. N., Whitham T. G., Lark K. G. Genetic analysis of an interspecific hybrid swarm of Populus: occurrence of unidirectional introgression. Genetics. 1989 Nov;123(3):557–565. doi: 10.1093/genetics/123.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Loukas M., Delidakis C., Kafatos F. C. Genomic blot hybridization as a tool of phylogenetic analysis: evolutionary divergence in the genus Drosophila. J Mol Evol. 1986;24(1-2):174–188. doi: 10.1007/BF02099965. [DOI] [PubMed] [Google Scholar]
  11. Martin B., Nienhuis J., King G., Schaefer A. Restriction fragment length polymorphisms associated with water use efficiency in tomato. Science. 1989 Mar 31;243(4899):1725–1728. doi: 10.1126/science.243.4899.1725. [DOI] [PubMed] [Google Scholar]
  12. McDermott J. M., McDonald B. A., Allard R. W., Webster R. K. Genetic variability for pathogenicity, isozyme, ribosomal DNA and colony color variants in populations of Rhynchosporium secalis. Genetics. 1989 Jul;122(3):561–565. doi: 10.1093/genetics/122.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Meylan A. B., Bowen B. W., Avise J. C. A genetic test of the natal homing versus social facilitation models for green turtle migration. Science. 1990 May 11;248(4956):724–727. doi: 10.1126/science.2333522. [DOI] [PubMed] [Google Scholar]
  14. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978 Jul;89(3):583–590. doi: 10.1093/genetics/89.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nevo E., Ben-Shlomo R., Maeda N. Haptoglobin DNA polymorphism in subterranean mole rats of the Spalax ehrenbergi superspecies in Israel. Heredity (Edinb) 1989 Feb;62(Pt 1):85–90. doi: 10.1038/hdy.1989.11. [DOI] [PubMed] [Google Scholar]
  16. Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E., Tanksley S. D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature. 1988 Oct 20;335(6192):721–726. doi: 10.1038/335721a0. [DOI] [PubMed] [Google Scholar]
  17. Quinn T. W., White B. N. Identification of restriction-fragment-length polymorphisms in genomic DNA of the lesser snow goose (Anser caerulescens caerulescens). Mol Biol Evol. 1987 Mar;4(2):126–143. doi: 10.1093/oxfordjournals.molbev.a040430. [DOI] [PubMed] [Google Scholar]
  18. Rowan R., Powers D. A. A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science. 1991 Mar 15;251(4999):1348–1351. doi: 10.1126/science.251.4999.1348. [DOI] [PubMed] [Google Scholar]
  19. Weller J. I., Soller M., Brody T. Linkage analysis of quantitative traits in an interspecific cross of tomato (lycopersicon esculentum x lycopersicon pimpinellifolium) by means of genetic markers. Genetics. 1988 Feb;118(2):329–339. doi: 10.1093/genetics/118.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Workman P. L., Niswander J. D. Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. Am J Hum Genet. 1970 Jan;22(1):24–49. [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES