Abstract
The rearrangement hIn1(I) was isolated as a crossover suppressor for the right end of linkage group (LG) I. By inducing genetic markers on this crossover suppressor and establishing the gene order in the homozygote, hIn1(I) was demonstrated to be the first genetically proven inversion in Caenorhabditis elegans. hIn1(I) extensively suppresses recombination in heterozygotes in the right arm of chromosome I from unc-75 to unc-54. This suppression is associated with enhancement of recombination in other regions of the chromosome. The enhancement observed maintains the normal distribution of events but does not extend to other chromosomes. The genetic distance of chromosome I in inversion heterozygotes approaches 50 map units (m.u.), approximately equal to one chiasma per meiosis. This value is maintained in hIn1(I)/szT1(I;X) heterozygotes indicating that small homologous regions can pair and recombine efficiently. hIn1(I)/hT2(I;III) heterozygotes share no uninverted homologous regions and segregate randomly, suggesting the importance of chiasma formation in proper segregation of chromosomes. The genetic distance of chromosome I in these heterozygotes is less that 1 m.u., indicating that crossing over can be suppressed along an entire chromosome. Since one of our goals was to develop an efficient balancer for the right end of LG I, the effectiveness of hIn1(I) as a balancer was tested by isolating and maintaining lethal mutations. The meiotic behaviour of hIn1(I) is consistent with other genetic and cytogenetic data suggesting the meiotic chromosomes are monocentric. Rare recombinants bearing duplications and deficiencies of chromosome I were recovered from hIn1(I) heterozygotes, leading to the proposal the inversion was paracentric.
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albertson D. G., Thomson J. N. The kinetochores of Caenorhabditis elegans. Chromosoma. 1982;86(3):409–428. doi: 10.1007/BF00292267. [DOI] [PubMed] [Google Scholar]
- Anderson P., Brenner S. A selection for myosin heavy chain mutants in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4470–4474. doi: 10.1073/pnas.81.14.4470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chovnick A. Gene conversion and transfer of genetic information within the inverted region of inversion heterozygotes. Genetics. 1973 Sep;75(1):123–131. doi: 10.1093/genetics/75.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark D. V., Rogalski T. M., Donati L. M., Baillie D. L. The unc-22(IV) region of Caenorhabditis elegans: genetic analysis of lethal mutations. Genetics. 1988 Jun;119(2):345–353. doi: 10.1093/genetics/119.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferguson E. L., Horvitz H. R. Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics. 1985 May;110(1):17–72. doi: 10.1093/genetics/110.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRELL R. F. A new model for secondary nondisjunction: the role of distributive pairing. Genetics. 1962 Dec;47:1737–1754. doi: 10.1093/genetics/47.12.1737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goday C., Ciofi-Luzzatto A., Pimpinelli S. Centromere ultrastructure in germ-line chromosomes of Parascaris. Chromosoma. 1985;91(2):121–125. doi: 10.1007/BF00294055. [DOI] [PubMed] [Google Scholar]
- HUGHES-SCHRADER S., SCHRADER F. The kinetochore of the Hemiptera. Chromosoma. 1961;12:327–350. doi: 10.1007/BF00328928. [DOI] [PubMed] [Google Scholar]
- Haber J. E., Thorburn P. C. Healing of broken linear dicentric chromosomes in yeast. Genetics. 1984 Feb;106(2):207–226. doi: 10.1093/genetics/106.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haber J. E., Thorburn P. C., Rogers D. Meiotic and mitotic behavior of dicentric chromosomes in Saccharomyces cerevisiae. Genetics. 1984 Feb;106(2):185–205. doi: 10.1093/genetics/106.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawley R. S. Chromosomal sites necessary for normal levels of meiotic recombination in Drosophila melanogaster. I. Evidence for and mapping of the sites. Genetics. 1980 Mar;94(3):625–646. doi: 10.1093/genetics/94.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herman R. K., Albertson D. G., Brenner S. Chromosome rearrangements in Caenorhabditis elegans. Genetics. 1976 May;83(1):91–105. doi: 10.1093/genetics/83.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herman R. K. Crossover suppressors and balanced recessive lethals in Caenorhabditis elegans. Genetics. 1978 Jan;88(1):49–65. doi: 10.1093/genetics/88.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herman R. K., Kari C. K., Hartman P. S. Dominant X-chromosome nondisjunction mutants of Caenorhabditis elegans. Genetics. 1982 Nov;102(3):379–400. doi: 10.1093/genetics/102.3.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herman R. K., Kari C. K. Recombination between small X chromosome duplications and the X chromosome in Caenorhabditis elegans. Genetics. 1989 Apr;121(4):723–737. doi: 10.1093/genetics/121.4.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinton C W, Lucchesi J C. A Cytogenetic Study of Crossing over in Inversion Heterozygotes of Drosophila Melanogaster. Genetics. 1960 Jan;45(1):87–94. doi: 10.1093/genetics/45.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodgkin J., Horvitz H. R., Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. doi: 10.1093/genetics/91.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horvitz H. R., Brenner S., Hodgkin J., Herman R. K. A uniform genetic nomenclature for the nematode Caenorhabditis elegans. Mol Gen Genet. 1979 Sep;175(2):129–133. doi: 10.1007/BF00425528. [DOI] [PubMed] [Google Scholar]
- Kim J. S., Rose A. M. The effect of gamma radiation on recombination frequency in Caenorhabditis elegans. Genome. 1987 Jun;29(3):457–462. doi: 10.1139/g87-079. [DOI] [PubMed] [Google Scholar]
- McClintock B. The Fusion of Broken Ends of Chromosomes Following Nuclear Fusion. Proc Natl Acad Sci U S A. 1942 Nov;28(11):458–463. doi: 10.1073/pnas.28.11.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McClintock B. The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics. 1941 Mar;26(2):234–282. doi: 10.1093/genetics/26.2.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKim K. S., Howell A. M., Rose A. M. The effects of translocations on recombination frequency in Caenorhabditis elegans. Genetics. 1988 Dec;120(4):987–1001. doi: 10.1093/genetics/120.4.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Novitski E, Braver G. An Analysis of Crossing over within a Heterozygous Inversion in Drosophila Melanogaster. Genetics. 1954 Mar;39(2):197–209. doi: 10.1093/genetics/39.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pimpinelli S., Goday C. Unusual kinetochores and chromatin diminution in Parascaris. Trends Genet. 1989 Sep;5(9):310–315. doi: 10.1016/0168-9525(89)90114-5. [DOI] [PubMed] [Google Scholar]
- Prasad S. S., Baillie D. L. Evolutionarily conserved coding sequences in the dpy-20-unc-22 region of Caenorhabditis elegans. Genomics. 1989 Aug;5(2):185–198. doi: 10.1016/0888-7543(89)90045-1. [DOI] [PubMed] [Google Scholar]
- Roberts P. A. A positive correlation between crossing over within heterozygous pericentric inversions and reduced egg hatch of Drosophila females. Genetics. 1967 May;56(1):179–187. doi: 10.1093/genetics/56.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose A. M., Baillie D. L. The Effect of Temperature and Parental Age on Recombination and Nondisjunction in CAENORHABDITIS ELEGANS. Genetics. 1979 Jun;92(2):409–418. doi: 10.1093/genetics/92.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenbluth R. E., Baillie D. L. The genetic analysis of a reciprocal translocation, eT1(III; V), in Caenorhabditis elegans. Genetics. 1981 Nov-Dec;99(3-4):415–428. doi: 10.1093/genetics/99.3-4.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenbluth R. E., Cuddeford C., Baillie D. L. Mutagenesis in Caenorhabditis elegans. II. A spectrum of mutational events induced with 1500 r of gamma-radiation. Genetics. 1985 Mar;109(3):493–511. doi: 10.1093/genetics/109.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenbluth R. E., Johnsen R. C., Baillie D. L. Pairing for recombination in LGV of Caenorhabditis elegans: a model based on recombination in deficiency heterozygotes. Genetics. 1990 Mar;124(3):615–625. doi: 10.1093/genetics/124.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigurdson D. C., Herman R. K., Horton C. A., Kari C. K., Pratt S. E. An X-autosome fusion chromosome of Caenorhabditis elegans. Mol Gen Genet. 1986 Feb;202(2):212–218. doi: 10.1007/BF00331639. [DOI] [PubMed] [Google Scholar]
- Starr T., Howell A. M., McDowall J., Peters K., Rose A. M. Isolation and mapping of DNA probes within the linkage group I gene cluster of Caenorhabditis elegans. Genome. 1989 Jun;32(3):365–372. doi: 10.1139/g89-456. [DOI] [PubMed] [Google Scholar]
- Sturtevant A H, Beadle G W. The Relations of Inversions in the X Chromosome of Drosophila Melanogaster to Crossing over and Disjunction. Genetics. 1936 Sep;21(5):554–604. doi: 10.1093/genetics/21.5.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szauter P. An analysis of regional constraints on exchange in Drosophila melanogaster using recombination-defective meiotic mutants. Genetics. 1984 Jan;106(1):45–71. doi: 10.1093/genetics/106.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zetka M. C., Rose A. M. Sex-related differences in crossing over in Caenorhabditis elegans. Genetics. 1990 Oct;126(2):355–363. doi: 10.1093/genetics/126.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]