Skip to main content
Genetics logoLink to Genetics
. 1992 Jun;131(2):413–421. doi: 10.1093/genetics/131.2.413

Hereditary Lactate Dehydrogenase a-Subunit Deficiency as Cause of Early Postimplantation Death of Homozygotes in Mus Musculus

S Merkle 1, J Favor 1, J Graw 1, S Hornhardt 1, W Pretsch 1
PMCID: PMC1205015  PMID: 1644279

Abstract

Two ethylnitrosourea-induced heterozygous mouse mutants with approximately 58 and 50% of wild-type lactate dehydrogenase (LDH) activity and a γ-ray-induced heterozygous mutant with 50% of wild-type LDH activity in blood, liver and spleen (expressing predominantly the Ldh-1 gene) were recovered in mutagenicity experiments following spermatogonial treatment. Physiological and genetic studies revealed no indications for differences in fertility as well as hematological or other physiological traits between heterozygotes of each mutant line and wild types. This suggests that neither the mutations in the heterozygous state per se nor the resulting approximate 42 to 50% LDH deficiency affect metabolism and fitness. Physicochemical and immunological studies clearly demonstrated that the two mutations with 50% deficiency in heterozygotes result from null alleles of the Ldh-1 structural locus, generating neither enzyme activity nor immunological cross-reacting material. In contrast, the heterozygous mutant with approximately 58% of normal blood LDH activity was shown to be due to a Ldh-1 allele creating protein subunits, which in random assortment with wild-type subunits in vivo exhibit a reduced specific activity and further alterations of kinetic and physicochemical characteristics. All the mutations in the homozygous state were found to be lethal at an early postimplantation stage of embryonic development, probably due to a block of glycolysis with the corresponding loss of the main source of metabolic energy during this ontogenetic stage. The distinct physiological consequences of the total absence of a functioning LDH-A subunit in mice and humans are discussed. The key role regarding the presence as well as developmental pattern of isozymes in estimating the impact of enzyme-activity mutations on the phenotype of an organism is emphasized.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auerbach S., Brinster R. L. Lactate dehydrogenase isozymes in the early mouse embryo. Exp Cell Res. 1967 Apr;46(1):89–92. doi: 10.1016/0014-4827(67)90411-9. [DOI] [PubMed] [Google Scholar]
  2. Beutler E., Mathai C. K., Smith J. E. Biochemical variants of glucose-6-phosphate dehydrogenase giving rise to congenital nonspherocytic hemolytic disease. Blood. 1968 Feb;31(2):131–150. [PubMed] [Google Scholar]
  3. Britton-Davidian J., Ruiz Bustos A., Thaler L., Topal M. Lactate dehydrogenase polymorphism in Mus musculus L. and Mus spretus Lataste. Experientia. 1978 Sep 15;34(9):1144–1145. doi: 10.1007/BF01922920. [DOI] [PubMed] [Google Scholar]
  4. Cattanach B. M., Perez J. N. A genetically determined variant of the A-subunit of lactic dehydrogenase in the deer mouse. Biochem Genet. 1969 Oct;3(5):499–506. doi: 10.1007/BF00485610. [DOI] [PubMed] [Google Scholar]
  5. Charles D. J., Pretsch W. Linear dose-response relationship of erythrocyte enzyme-activity mutations in offspring of ethylnitrosourea-treated mice. Mutat Res. 1987 Jan;176(1):81–91. doi: 10.1016/0027-5107(87)90255-7. [DOI] [PubMed] [Google Scholar]
  6. Clough J. R., Whittingham D. G. Metabolism of [14C]glucose by postimplantation mouse embryos in vitro. J Embryol Exp Morphol. 1983 Apr;74:133–142. [PubMed] [Google Scholar]
  7. Ehling U. H., Machemer L., Buselmaier W., Dýcka J., Frohberg H., Kratochvilova J., Lang R., Lorke D., Müller D., Peh J. Standard protocol for the dominant lethal test on male mice set up by the work group "Dominant Lethal Mutations of the ad hoc Committe Chemogenetics". Arch Toxicol. 1978 Jan 25;39(3):173–185. doi: 10.1007/BF00368226. [DOI] [PubMed] [Google Scholar]
  8. Ellington S. K. In vitro analysis of glucose metabolism and embryonic growth in postimplantation rat embryos. Development. 1987 Jul;100(3):431–439. doi: 10.1242/dev.100.3.431. [DOI] [PubMed] [Google Scholar]
  9. Engel W., Kreutz R., Wolf U. Studies on the genetic polymorphism of lactate dehydrogenase B (phenotype B - ) in rodent erythrocytes. Biochem Genet. 1972 Aug;7(1):45–55. doi: 10.1007/BF00487009. [DOI] [PubMed] [Google Scholar]
  10. Engel W., Petzoldt U. Early developmental changes of the lactate dehydrogenase isoenzyme pattern in mouse, rat, guinea-pig, Syrian hamster and rabbit. Humangenetik. 1973;20(2):125–131. doi: 10.1007/BF00284847. [DOI] [PubMed] [Google Scholar]
  11. Favor J. Characterization of dominant cataract mutations in mice: penetrance, fertility and homozygous viability of mutations recovered after 250 mg/kg ethylnitrosourea paternal treatment. Genet Res. 1984 Oct;44(2):183–197. doi: 10.1017/s0016672300026380. [DOI] [PubMed] [Google Scholar]
  12. Gardner D. K., Leese H. J. The role of glucose and pyruvate transport in regulating nutrient utilization by preimplantation mouse embryos. Development. 1988 Nov;104(3):423–429. doi: 10.1242/dev.104.3.423. [DOI] [PubMed] [Google Scholar]
  13. Gossen J. A., de Leeuw W. J., Tan C. H., Zwarthoff E. C., Berends F., Lohman P. H., Knook D. L., Vijg J. Efficient rescue of integrated shuttle vectors from transgenic mice: a model for studying mutations in vivo. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7971–7975. doi: 10.1073/pnas.86.20.7971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kanno T., Sudo K., Takeuchi I., Kanda S., Honda N., Nishimura Y., Oyama K. Hereditary deficiency of lactate dehydrogenase M-subunit. Clin Chim Acta. 1980 Dec 8;108(2):267–276. doi: 10.1016/0009-8981(80)90013-3. [DOI] [PubMed] [Google Scholar]
  15. Kitamura M., Iijima N., Hashimoto F., Hiratsuka A. Hereditary deficiency of subunit H of lactate dehydrogenase. Clin Chim Acta. 1971 Oct;34(3):419–423. doi: 10.1016/0009-8981(71)90095-7. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Leese H. J., Barton A. M. Pyruvate and glucose uptake by mouse ova and preimplantation embryos. J Reprod Fertil. 1984 Sep;72(1):9–13. doi: 10.1530/jrf.0.0720009. [DOI] [PubMed] [Google Scholar]
  19. Li S. S. Lactate dehydrogenase isoenzymes A (muscle), B (heart) and C (testis) of mammals and the genes coding for these enzymes. Biochem Soc Trans. 1989 Apr;17(2):304–307. doi: 10.1042/bst0170304. [DOI] [PubMed] [Google Scholar]
  20. Maekawa M., Sudo K., Kanno T. Immunochemical studies on lactate dehydrogenase A subunit deficiencies. Am J Hum Genet. 1986 Aug;39(2):232–238. [PMC free article] [PubMed] [Google Scholar]
  21. Merkle S., Pretsch W. Characterization of triosephosphate isomerase mutants with reduced enzyme activity in Mus musculus. Genetics. 1989 Dec;123(4):837–844. doi: 10.1093/genetics/123.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mohrenweiser H. W., Novotny J. E. An enzymatically inactive variant of human lactate dehydrogenase-LDHBGUA-1. Study of subunit interaction. Biochim Biophys Acta. 1982 Mar 18;702(1):90–98. doi: 10.1016/0167-4838(82)90030-9. [DOI] [PubMed] [Google Scholar]
  23. Monk M., Ansell J. Patterns of lactic dehydrogenase isozymes in mouse embryos over the implantation period in vivo and in vitro. J Embryol Exp Morphol. 1976 Dec;36(3):653–662. [PubMed] [Google Scholar]
  24. NISSELBAUM J. S., PACKER D. E., BODANSKY O. COMPARISON OF THE ACTIONS OF HUMAN BRAIN, LIVER, AND HEART LACTIC DEHYDROGENASE VARIANTS ON NUCLEOTIDE ANALOGUES AND ON SUBSTRATE ANALOGUES IN THE ABSENCE AND IN THE PRESENCE OF OXALATE AND OXAMATE. J Biol Chem. 1964 Sep;239:2830–2834. [PubMed] [Google Scholar]
  25. Pastink A., Vreeken C., Nivard M. J., Searles L. L., Vogel E. W. Sequence analysis of N-ethyl-N-nitrosourea-induced vermilion mutations in Drosophila melanogaster. Genetics. 1989 Sep;123(1):123–129. doi: 10.1093/genetics/123.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pretsch W. Eight independent Ldh-1 mutations of the mouse recovered in mutagenicity experiments: biochemical characteristics and chromosomal localization. Genet Res. 1989 Apr;53(2):101–104. doi: 10.1017/s001667230002797x. [DOI] [PubMed] [Google Scholar]
  27. Rapola J., Koskimies O. Embryonic enzyme patterns: characterization of the single lactate dehydrogenase isozyme in preimplanted mouse ova. Science. 1967 Sep 15;157(3794):1311–1312. doi: 10.1126/science.157.3794.1311. [DOI] [PubMed] [Google Scholar]
  28. Rauch N. A mutant form of lactate dehydrogenase in the horse. Ann N Y Acad Sci. 1968 Jun 14;151(1):672–677. doi: 10.1111/j.1749-6632.1968.tb11927.x. [DOI] [PubMed] [Google Scholar]
  29. SHAW C. R., BARTO E. GENETIC EVIDENCE FOR THE SUBUNIT STRUCTURE OF LACTATE DEHYDROGENASE ISOZYMES. Proc Natl Acad Sci U S A. 1963 Aug;50:211–214. doi: 10.1073/pnas.50.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sternberger L. A., Hardy P. H., Jr, Cuculis J. J., Meyer H. G. The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem. 1970 May;18(5):315–333. doi: 10.1177/18.5.315. [DOI] [PubMed] [Google Scholar]
  31. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vesell E. S. Genetic control of isozyme patterns in human tissues. Prog Med Genet. 1965;4:128–175. [PubMed] [Google Scholar]
  33. West J. D., Flockhart J. H., Peters J., Ball S. T. Death of mouse embryos that lack a functional gene for glucose phosphate isomerase. Genet Res. 1990 Oct-Dec;56(2-3):223–236. doi: 10.1017/s0016672300035321. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES