Abstract
The peptidase system in Drosophila melanogaster, consisting of dipeptidase-A, dipeptidase-B, dipeptidase-C and the leucine aminopeptidases, was used as a model to study the adaptive significance of enzyme activity variation. The involvement of the peptidases in osmoregulation has been suggested from the ubiquitous distribution of peptidase activities in nearly all tissues and the high concentration of amino acids and oligopeptides in the hemolymph. Under this hypothesis, larvae counteract increases in environmental osmotic stress by hydrolyzing peptides into amino acids both intra- and extracellularly to increase physiological osmotic concentration. The expression of the peptidases was studied by assaying for peptidase activities in third instar larvae of isogenic lines, which were reared under increasing levels of environmental osmotic stress using either D-mannitol or NaCl. Second and third chromosome substitution isogenic lines were used to assess the relative contribution of regulatory and structural genes in enzyme activity variation. Results indicate that: (1) genetic variation exists for peptidase activities, (2) the effect of osmotic stress is highly variable among peptidases, (3) changes in peptidase activities in response to osmotic stress depend on both genetic background and osmotic effector and (4) peptidase activities are correlated with each other, but these phenotypic correlations depend on genetic background, osmotic effector, and level of osmotic stress. Osmotic concentration in the larval hemolymph is correlated with leucine aminopeptidase activity, but changes in hemolymph osmotic concentration in response to environmental osmotic stress depend on the osmotic effector in the environment. Although these findings suggest that genetic and environmental factors contribute significantly toward the expression of enzymes with similar functions, a relative larval viability study of genotypes that differed significantly in dipeptidase-B (DIP-B) activity revealed that low DIP-B activity did not confer any measurable reduction in larval viability under increasing levels of environmental osmotic stress. These negative results suggest that, either DIP-B does not play a major role in osmoregulation or differential osmoregulation is not related to egg to adult viability in these tests.
Full Text
The Full Text of this article is available as a PDF (3.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Britten R. J., Davidson E. H. Gene regulation for higher cells: a theory. Science. 1969 Jul 25;165(3891):349–357. doi: 10.1126/science.165.3891.349. [DOI] [PubMed] [Google Scholar]
- Burton R. S., Feldman M. W. Physiological effects of an allozyme polymorphism: glutamate-pyruvate transaminase and response to hyperosmotic stress in the copepod Tigriopus californicus. Biochem Genet. 1983 Apr;21(3-4):239–251. doi: 10.1007/BF00499136. [DOI] [PubMed] [Google Scholar]
- Clark A. G. Causes and consequences of variation in energy storage in Drosophila melanogaster. Genetics. 1989 Sep;123(1):131–144. doi: 10.1093/genetics/123.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke B. The contribution of ecological genetics to evolutionary theory: detecting the direct effects of natural selection on particular polymorphic loci. Genetics. 1975 Jun;79 (Suppl):101–113. [PubMed] [Google Scholar]
- Collett J. I. The constancy and similarity of the amounts of free amino acids in inbred strains of Drosophila and outbred Calliphora. J Insect Physiol. 1976;22(9):1251–1255. doi: 10.1016/0022-1910(76)90102-5. [DOI] [PubMed] [Google Scholar]
- Eanes W. F., Bingham B., Hey J., Houle D. Targeted selection experiments and enzyme polymorphism: negative evidence for octanoate selection at the G6PD locus in Drosophila melanogaster. Genetics. 1985 Feb;109(2):379–391. doi: 10.1093/genetics/109.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geer B. W., Langevin M. L., McKechnie S. W. Dietary ethanol and lipid synthesis in Drosophila melanogaster. Biochem Genet. 1985 Aug;23(7-8):607–622. doi: 10.1007/BF00504295. [DOI] [PubMed] [Google Scholar]
- Geer B. W., Laurie-Ahlberg C. C. Genetic variation in the dietary sucrose modulation of enzyme activities in Drosophila melanogaster. Genet Res. 1984 Jun;43(3):307–321. doi: 10.1017/s0016672300026094. [DOI] [PubMed] [Google Scholar]
- Hall N. A. Peptidases in Drosophila melanogaster. I. Characterization of dipeptidase and leucine aminopeptidase activities. Biochem Genet. 1986 Oct;24(9-10):775–793. doi: 10.1007/BF00499009. [DOI] [PubMed] [Google Scholar]
- Hiraizumi K., Laurie C. C. Genetic characterization of dipeptidase activity modifiers in Drosophila melanogaster from natural populations. Biochem Genet. 1988 Dec;26(11-12):783–803. [PubMed] [Google Scholar]
- Lande R. The Genetic Covariance between Characters Maintained by Pleiotropic Mutations. Genetics. 1980 Jan;94(1):203–215. doi: 10.1093/genetics/94.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laurie-Ahlberg C. C. Genetic variation affecting the expression of enzyme-coding genes in Drosophila: an evolutionary perspective. Isozymes Curr Top Biol Med Res. 1985;12:33–88. [PubMed] [Google Scholar]
- Laurie-Ahlberg C. C. Genetic, ontogenetic, and tissue-specific variation of dipeptidases in Drosophila melanogaster. Biochem Genet. 1982 Jun;20(5-6):407–424. doi: 10.1007/BF00484692. [DOI] [PubMed] [Google Scholar]
- Laurie-Ahlberg C. C., Maroni G., Bewley G. C., Lucchesi J. C., Weir B. S. Quantitative genetic variation of enzyme activities in natural populations of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1073–1077. doi: 10.1073/pnas.77.2.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohnishi S., Voelker R. A. Comparative studies of allozyme loci in Drosophila simulans and Drosophila melanogaster. I. Three dipeptidase loci. Biochem Genet. 1981 Feb;19(1-2):75–85. doi: 10.1007/BF00486138. [DOI] [PubMed] [Google Scholar]
- WADDINGTON C. H. Canalization of development and genetic assimilation of acquired characters. Nature. 1959 Jun 13;183(4676):1654–1655. doi: 10.1038/1831654a0. [DOI] [PubMed] [Google Scholar]
- Wilton A. N., Laurie-Ahlberg C. C., Emigh T. H., Curtsinger J. W. Naturally occurring enzyme activity variation in Drosophila melanogaster. II. Relationships among enzymes. Genetics. 1982 Oct;102(2):207–221. doi: 10.1093/genetics/102.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
