Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Genetics logoLink to Genetics
. 1992 Jul;131(3):673–682. doi: 10.1093/genetics/131.3.673

Molecular Analysis of Mutations Induced in the Vermilion Gene of Drosophila Melanogaster by Methyl Methanesulfonate

MJM Nivard 1, A Pastink 1, E W Vogel 1
PMCID: PMC1205038  PMID: 1628810

Abstract

The nature of DNA sequence changes induced by methyl methanesulfonate (MMS) at the vermilion locus of Drosophila melanogaster was determined after exposure of postmeiotic male germ cell stages. MMS is a carcinogen with strong preference for base nitrogen alkylation (s = 0.86). The spectrum of 40 intralocus mutations was dominated by AT -> GC transitions (23%), AT -> TA transversions (54%) and deletions (14%). The small deletions were preferentially found among mutants isolated in the F(1) (8/18), whereas the AT -> GC transitions exclusively occurred in the F(2) (6/22). The MMS-induced transversions and deletions are presumably caused by N-methyl DNA adducts, which may release apurinic intermediates, known to be a time-related process. Furthermore, MMS produces multilocus deletions, i.e., at least 30% of the F(1) mutants analyzed were of this type. A comparison of the mutational spectra of MMS with that produced by ethylnitrosourea (ENU), also in the vermilion locus of Drosophila, reveals major differences: predominantly transition mutations (61% GC -> AT and 18% AT -> GC) were found in both the F(1) and F(2) spectrum induced by ENU. It is concluded that the mutational spectrum of MMS is dominated by nitrogen DNA adducts, whereas with ENU DNA sequence changes mainly arose from modified oxygen in DNA.

Full Text

The Full Text of this article is available as a PDF (980.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini A. M., Hofer M., Calos M. P., Miller J. H. On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell. 1982 Jun;29(2):319–328. doi: 10.1016/0092-8674(82)90148-9. [DOI] [PubMed] [Google Scholar]
  2. Batzer M. A., Tedeschi B., Fossett N. G., Tucker A., Kilroy G., Arbour P., Lee W. R. Spectra of molecular changes induced in DNA of Drosophila spermatozoa by 1-ethyl-1-nitrosourea and X-rays. Mutat Res. 1988 May;199(1):255–268. doi: 10.1016/0027-5107(88)90253-9. [DOI] [PubMed] [Google Scholar]
  3. Burns P. A., Gordon A. J., Glickman B. W. Mutational specificity of N-methyl-N-nitrosourea in the lacI gene of Escherichia coli. Carcinogenesis. 1988 Sep;9(9):1607–1610. doi: 10.1093/carcin/9.9.1607. [DOI] [PubMed] [Google Scholar]
  4. Chaudhry M. A., Fox M. Methylmethane-sulphonate and X-ray-induced mutations in the Chinese hamster hprt gene: mRNA phenotyping using polymerase chain reactions. Mutagenesis. 1990 Sep;5(5):497–504. doi: 10.1093/mutage/5.5.497. [DOI] [PubMed] [Google Scholar]
  5. DuBridge R. B., Tang P., Hsia H. C., Leong P. M., Miller J. H., Calos M. P. Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol. 1987 Jan;7(1):379–387. doi: 10.1128/mcb.7.1.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eckert K. A., Ingle C. A., Klinedinst D. K., Drinkwater N. R. Molecular analysis of mutations induced in human cells by N-ethyl-N-nitrosourea. Mol Carcinog. 1988;1(1):50–56. doi: 10.1002/mc.2940010111. [DOI] [PubMed] [Google Scholar]
  7. Gentil A., Renault G., Madzak C., Margot A., Cabral-Neto J. B., Vasseur J. J., Rayner B., Imbach J. L., Sarasin A. Mutagenic properties of a unique abasic site in mammalian cells. Biochem Biophys Res Commun. 1990 Dec 14;173(2):704–710. doi: 10.1016/s0006-291x(05)80092-0. [DOI] [PubMed] [Google Scholar]
  8. Gray M., Charpentier A., Walsh K., Wu P., Bender W. Mapping point mutations in the Drosophila rosy locus using denaturing gradient gel blots. Genetics. 1991 Jan;127(1):139–149. doi: 10.1093/genetics/127.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hall J., Brésil H., Montesano R. O6-Alkylguanine DNA alkyltransferase activity in monkey, human and rat liver. Carcinogenesis. 1985 Feb;6(2):209–211. doi: 10.1093/carcin/6.2.209. [DOI] [PubMed] [Google Scholar]
  10. Horsfall M. J., Gordon A. J., Burns P. A., Zielenska M., van der Vliet G. M., Glickman B. W. Mutational specificity of alkylating agents and the influence of DNA repair. Environ Mol Mutagen. 1990;15(2):107–122. doi: 10.1002/em.2850150208. [DOI] [PubMed] [Google Scholar]
  11. Kunkel T. A. Mutational specificity of depurination. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1494–1498. doi: 10.1073/pnas.81.5.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Larson K., Sahm J., Shenkar R., Strauss B. Methylation-induced blocks to in vitro DNA replication. Mutat Res. 1985 Jun-Jul;150(1-2):77–84. doi: 10.1016/0027-5107(85)90103-4. [DOI] [PubMed] [Google Scholar]
  13. Lawley P. D. Some chemical aspects of dose-response relationships in alkylation mutagenesis. Mutat Res. 1974 Jun;23(3):283–295. doi: 10.1016/0027-5107(74)90102-x. [DOI] [PubMed] [Google Scholar]
  14. Lefevre G., Jr The eccentricity of vermilion deficiencies in Drosophila melanogaster. Genetics. 1969 Nov;63(3):589–600. doi: 10.1093/genetics/63.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LoMonaco M. B., Lee W. R., Chang S. H. Identification of an X-ray induced deletion mutant flanked by direct repeats. Nucleic Acids Res. 1987 Sep 25;15(18):7641–7641. doi: 10.1093/nar/15.18.7641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Loeb L. A., Preston B. D. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet. 1986;20:201–230. doi: 10.1146/annurev.ge.20.120186.001221. [DOI] [PubMed] [Google Scholar]
  17. Loechler E. L., Green C. L., Essigmann J. M. In vivo mutagenesis by O6-methylguanine built into a unique site in a viral genome. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6271–6275. doi: 10.1073/pnas.81.20.6271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matsuda Y., Tobari I., Maemori M., Seki N. Mechanism of chromosome aberration induction in the mouse egg fertilized with sperm recovered from postmeiotic germ cells treated with methyl methanesulfonate. Mutat Res. 1989 Oct;214(2):165–180. doi: 10.1016/0027-5107(89)90161-9. [DOI] [PubMed] [Google Scholar]
  19. Nalbantoglu J., Hartley D., Phear G., Tear G., Meuth M. Spontaneous deletion formation at the aprt locus of hamster cells: the presence of short sequence homologies and dyad symmetries at deletion termini. EMBO J. 1986 Jun;5(6):1199–1204. doi: 10.1002/j.1460-2075.1986.tb04347.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nalbantoglu J., Phear G., Meuth M. DNA sequence analysis of spontaneous mutations at the aprt locus of hamster cells. Mol Cell Biol. 1987 Apr;7(4):1445–1449. doi: 10.1128/mcb.7.4.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Natarajan A. T., Simons J. W., Vogel E. W., van Zeeland A. A. Relationship between cell killing, chromosomal aberrations, sister-chromatid exchanges and point mutations induced by monofunctional alkylating agents in Chinese hamster cells. A correlation with different ethylation products in DNA. Mutat Res. 1984 Aug;128(1):31–40. doi: 10.1016/0027-5107(84)90044-7. [DOI] [PubMed] [Google Scholar]
  22. Parádi E., Vogel E. W., Szilágyi E. Effect of storage and dose on MMS-induced deletions. Complementation analysis of X-chromosomal recessive lethals in the zeste-white and maroon-like regions of Drosophila melanogaster. Mutat Res. 1983 Oct;111(2):145–159. doi: 10.1016/0027-5107(83)90059-3. [DOI] [PubMed] [Google Scholar]
  23. Pastink A., Heemskerk E., Nivard M. J., van Vliet C. J., Vogel E. W. Mutational specificity of ethyl methanesulfonate in excision-repair-proficient and -deficient strains of Drosophila melanogaster. Mol Gen Genet. 1991 Oct;229(2):213–218. doi: 10.1007/BF00272158. [DOI] [PubMed] [Google Scholar]
  24. Pastink A., Vreeken C., Nivard M. J., Searles L. L., Vogel E. W. Sequence analysis of N-ethyl-N-nitrosourea-induced vermilion mutations in Drosophila melanogaster. Genetics. 1989 Sep;123(1):123–129. doi: 10.1093/genetics/123.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pastink A., Vreeken C., Vogel E. W., Eeken J. C. Mutations induced at the white and vermilion loci in Drosophila melanogaster. Mutat Res. 1990 Jul;231(1):63–71. doi: 10.1016/0027-5107(90)90177-6. [DOI] [PubMed] [Google Scholar]
  26. Pegg A. E., Scicchitano D., Dolan M. E. Comparison of the rates of repair of O6-alkylguanines in DNA by rat liver and bacterial O6-alkylguanine-DNA alkyltransferase. Cancer Res. 1984 Sep;44(9):3806–3811. [PubMed] [Google Scholar]
  27. Preston B. D., Singer B., Loeb L. A. Mutagenic potential of O4-methylthymine in vivo determined by an enzymatic approach to site-specific mutagenesis. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8501–8505. doi: 10.1073/pnas.83.22.8501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Richardson K. K., Richardson F. C., Crosby R. M., Swenberg J. A., Skopek T. R. DNA base changes and alkylation following in vivo exposure of Escherichia coli to N-methyl-N-nitrosourea or N-ethyl-N-nitrosourea. Proc Natl Acad Sci U S A. 1987 Jan;84(2):344–348. doi: 10.1073/pnas.84.2.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sagher D., Strauss B. Insertion of nucleotides opposite apurinic/apyrimidinic sites in deoxyribonucleic acid during in vitro synthesis: uniqueness of adenine nucleotides. Biochemistry. 1983 Sep 13;22(19):4518–4526. doi: 10.1021/bi00288a026. [DOI] [PubMed] [Google Scholar]
  30. Schaaper R. M., Danforth B. N., Glickman B. W. Mechanisms of spontaneous mutagenesis: an analysis of the spectrum of spontaneous mutation in the Escherichia coli lacI gene. J Mol Biol. 1986 May 20;189(2):273–284. doi: 10.1016/0022-2836(86)90509-7. [DOI] [PubMed] [Google Scholar]
  31. Schaaper R. M., Kunkel T. A., Loeb L. A. Infidelity of DNA synthesis associated with bypass of apurinic sites. Proc Natl Acad Sci U S A. 1983 Jan;80(2):487–491. doi: 10.1073/pnas.80.2.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Seed B. Purification of genomic sequences from bacteriophage libraries by recombination and selection in vivo. Nucleic Acids Res. 1983 Apr 25;11(8):2427–2445. doi: 10.1093/nar/11.8.2427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vogel E. W. O-alkylation in DNA does not correlate with the formation of chromosome breakage events in D. melanogaster. Mutat Res. 1986 Sep;162(2):201–213. doi: 10.1016/0027-5107(86)90086-2. [DOI] [PubMed] [Google Scholar]
  34. Vogel E., Natarajan A. T. The relation between reaction kinetics and mutagenic action of mono-functional alkylating agents in higher eukaryotic systems. II. Total and partial sex-chromosome loss in Drosophila. Mutat Res. 1979 Aug;62(1):101–123. doi: 10.1016/0027-5107(79)90224-0. [DOI] [PubMed] [Google Scholar]
  35. Zielenska M., Horsfall M. J., Glickman B. W. The dissimilar mutational consequences of SN1 and SN2 DNA alkylation pathways: clues from the mutational specificity of dimethylsulphate in the lacI gene of Escherichia coli. Mutagenesis. 1989 May;4(3):230–234. doi: 10.1093/mutage/4.3.230. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES