Abstract
To measure the amount of new genetic variation in 6-week weight of mice arising each generation from mutation, selection lines derived from an initially inbred strain were maintained for 25 generations. An analysis using an animal model with restricted maximum likelihood was applied to estimate a mutational genetic component of variance for the infinitesimal model of many genes of small effect. Assuming that the inbred base population was at a mutation-drift equilibrium, it is estimated that the heritability for body size has increased by 1.0% per generation, with lower and upper confidence limits of 0.6% and 1.6%, respectively. A model which includes a mutational genetic component of variance fits the data much better than one involving only base population genetic variance. A model with no genetic component fits the data very poorly. An environmental covariance of body size of mother and offspring was included in the model and accounts for 10% of the variance. By using information only from the observed response to selection, the estimated increase in heritability from mutation is 0.3% per generation. These values are higher than published estimates for the increase in variance from spontaneous mutations in bristle traits of Drosophila, for which there are extensive data, but similar to estimates for various skeletal traits in mice.
Full Text
The Full Text of this article is available as a PDF (824.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Falconer D. S. Replicated selection for body weight in mice. Genet Res. 1973 Dec;22(3):291–321. doi: 10.1017/s0016672300013094. [DOI] [PubMed] [Google Scholar]
- Hill W. G. Predictions of response to artificial selection from new mutations. Genet Res. 1982 Dec;40(3):255–278. doi: 10.1017/s0016672300019145. [DOI] [PubMed] [Google Scholar]
- Holland C. A., Wozney J., Hopkins N. Nucleotide sequence of the gp70 gene of murine retrovirus MCF 247. J Virol. 1983 Sep;47(3):413–420. doi: 10.1128/jvi.47.3.413-420.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li W. H., Tanimura M., Sharp P. M. An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol. 1987;25(4):330–342. doi: 10.1007/BF02603118. [DOI] [PubMed] [Google Scholar]
- Lynch M. The rate of polygenic mutation. Genet Res. 1988 Apr;51(2):137–148. doi: 10.1017/s0016672300024150. [DOI] [PubMed] [Google Scholar]
- Mackay T. F., Lyman R. F., Jackson M. S. Effects of P element insertions on quantitative traits in Drosophila melanogaster. Genetics. 1992 Feb;130(2):315–332. doi: 10.1093/genetics/130.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer K., Hill W. G. Mixed model analysis of a selection experiment for food intake in mice. Genet Res. 1991 Feb;57(1):71–81. doi: 10.1017/s0016672300029062. [DOI] [PubMed] [Google Scholar]
- Mousseau T. A., Roff D. A. Natural selection and the heritability of fitness components. Heredity (Edinb) 1987 Oct;59(Pt 2):181–197. doi: 10.1038/hdy.1987.113. [DOI] [PubMed] [Google Scholar]
- Stoye J. P., Coffin J. M. Polymorphism of murine endogenous proviruses revealed by using virus class-specific oligonucleotide probes. J Virol. 1988 Jan;62(1):168–175. doi: 10.1128/jvi.62.1.168-175.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]