Abstract
We have identified 45 mutants of Caenorhabditis elegans that show ectopic surface binding of the lectins wheat germ agglutinin (WGA) and soybean agglutinin (SBA). These mutations are all recessive and define six genes: srf-2, srf-3, srf-4, srf-5, srf-8 and srf-9. Mutations in these genes fall into two phenotypic classes: srf-2, -3, -5 mutants are grossly wild-type, except for their lectin-binding phenotype; srf-4, -8, -9 mutants have a suite of defects, including uncoordinated movement, abnormal egg laying, and defective copulatory bursae morphogenesis. Characterization of these pleiotropic mutants at the cellular level reveals defects in the migration of the gonadal distal tip cell and in axon morphology. Unexpectedly, the pleiotropic mutations also interact with mutations in the lin-12 gene, which encodes a putative cell surface receptor involved in the control of cell fate. We propose that the underlying defect in the pleiotropic mutations may be in the general processing or secretion of extracellular proteins.
Full Text
The Full Text of this article is available as a PDF (5.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Austin J., Kimble J. glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell. 1987 Nov 20;51(4):589–599. doi: 10.1016/0092-8674(87)90128-0. [DOI] [PubMed] [Google Scholar]
- Bacic A., Kahane I., Zuckerman B. M. Panagrellus redivivus and Caenorhabditis elegans: evidence for the absence of sialic acids. Exp Parasitol. 1990 Nov;71(4):483–488. doi: 10.1016/0014-4894(90)90074-m. [DOI] [PubMed] [Google Scholar]
- Brandley B. K., Shaper J. H., Schnaar R. L. Tumor cell haptotaxis on immobilized N-acetylglucosamine gradients. Dev Biol. 1990 Jul;140(1):161–171. doi: 10.1016/0012-1606(90)90063-o. [DOI] [PubMed] [Google Scholar]
- Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chalfie M., Thomson J. N. Structural and functional diversity in the neuronal microtubules of Caenorhabditis elegans. J Cell Biol. 1982 Apr;93(1):15–23. doi: 10.1083/jcb.93.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandrasekaran S., Dean J. W., 3rd, Giniger M. S., Tanzer M. L. Laminin carbohydrates are implicated in cell signaling. J Cell Biochem. 1991 Jun;46(2):115–124. doi: 10.1002/jcb.240460205. [DOI] [PubMed] [Google Scholar]
- Coulson A., Sulston J., Brenner S., Karn J. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7821–7825. doi: 10.1073/pnas.83.20.7821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox G. N., Staprans S., Edgar R. S. The cuticle of Caenorhabditis elegans. II. Stage-specific changes in ultrastructure and protein composition during postembryonic development. Dev Biol. 1981 Sep;86(2):456–470. doi: 10.1016/0012-1606(81)90204-9. [DOI] [PubMed] [Google Scholar]
- Francis G. R., Waterston R. H. Muscle organization in Caenorhabditis elegans: localization of proteins implicated in thin filament attachment and I-band organization. J Cell Biol. 1985 Oct;101(4):1532–1549. doi: 10.1083/jcb.101.4.1532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenwald I. S., Sternberg P. W., Horvitz H. R. The lin-12 locus specifies cell fates in Caenorhabditis elegans. Cell. 1983 Sep;34(2):435–444. doi: 10.1016/0092-8674(83)90377-x. [DOI] [PubMed] [Google Scholar]
- Han M., Sternberg P. W. let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein. Cell. 1990 Nov 30;63(5):921–931. doi: 10.1016/0092-8674(90)90495-z. [DOI] [PubMed] [Google Scholar]
- Hedgecock E. M., Culotti J. G., Hall D. H., Stern B. D. Genetics of cell and axon migrations in Caenorhabditis elegans. Development. 1987 Jul;100(3):365–382. doi: 10.1242/dev.100.3.365. [DOI] [PubMed] [Google Scholar]
- Hedgecock E. M., Culotti J. G., Hall D. H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron. 1990 Jan;4(1):61–85. doi: 10.1016/0896-6273(90)90444-k. [DOI] [PubMed] [Google Scholar]
- Hodgkin J., Horvitz H. R., Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. doi: 10.1093/genetics/91.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horvitz H. R., Brenner S., Hodgkin J., Herman R. K. A uniform genetic nomenclature for the nematode Caenorhabditis elegans. Mol Gen Genet. 1979 Sep;175(2):129–133. doi: 10.1007/BF00425528. [DOI] [PubMed] [Google Scholar]
- Horvitz H. R., Sternberg P. W., Greenwald I. S., Fixsen W., Ellis H. M. Mutations that affect neural cell lineages and cell fates during the development of the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):453–463. doi: 10.1101/sqb.1983.048.01.050. [DOI] [PubMed] [Google Scholar]
- Johnson C. D., Stretton A. O. GABA-immunoreactivity in inhibitory motor neurons of the nematode Ascaris. J Neurosci. 1987 Jan;7(1):223–235. doi: 10.1523/JNEUROSCI.07-01-00223.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kemphues K. J., Priess J. R., Morton D. G., Cheng N. S. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell. 1988 Feb 12;52(3):311–320. doi: 10.1016/s0092-8674(88)80024-2. [DOI] [PubMed] [Google Scholar]
- Kenyon C. A gene involved in the development of the posterior body region of C. elegans. Cell. 1986 Aug 1;46(3):477–487. doi: 10.1016/0092-8674(86)90668-9. [DOI] [PubMed] [Google Scholar]
- Kimble J., Hirsh D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol. 1979 Jun;70(2):396–417. doi: 10.1016/0012-1606(79)90035-6. [DOI] [PubMed] [Google Scholar]
- Kramer J. M., Johnson J. J., Edgar R. S., Basch C., Roberts S. The sqt-1 gene of C. elegans encodes a collagen critical for organismal morphogenesis. Cell. 1988 Nov 18;55(4):555–565. doi: 10.1016/0092-8674(88)90214-0. [DOI] [PubMed] [Google Scholar]
- Künemund V., Jungalwala F. B., Fischer G., Chou D. K., Keilhauer G., Schachner M. The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions. J Cell Biol. 1988 Jan;106(1):213–223. doi: 10.1083/jcb.106.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lambie E. J., Kimble J. Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. Development. 1991 May;112(1):231–240. doi: 10.1242/dev.112.1.231. [DOI] [PubMed] [Google Scholar]
- Landmesser L., Dahm L., Tang J. C., Rutishauser U. Polysialic acid as a regulator of intramuscular nerve branching during embryonic development. Neuron. 1990 May;4(5):655–667. doi: 10.1016/0896-6273(90)90193-j. [DOI] [PubMed] [Google Scholar]
- Link C. D., Ehrenfels C. W., Wood W. B. Mutant expression of male copulatory bursa surface markers in Caenorhabditis elegans. Development. 1988 Jul;103(3):485–495. doi: 10.1242/dev.103.3.485. [DOI] [PubMed] [Google Scholar]
- Maine E. M., Kimble J. Identification of genes that interact with glp-1, a gene required for inductive cell interactions in Caenorhabditis elegans. Development. 1989 May;106(1):133–143. doi: 10.1242/dev.106.1.133. [DOI] [PubMed] [Google Scholar]
- Maizels R. M., Gregory W. F., Kwan-Lim G. E., Selkirk M. E. Filarial surface antigens: the major 29 kilodalton glycoprotein and a novel 17-200 kilodalton complex from adult Brugia malayi parasites. Mol Biochem Parasitol. 1989 Jan 15;32(2-3):213–227. doi: 10.1016/0166-6851(89)90072-8. [DOI] [PubMed] [Google Scholar]
- Manser J., Wood W. B. Mutations affecting embryonic cell migrations in Caenorhabditis elegans. Dev Genet. 1990;11(1):49–64. doi: 10.1002/dvg.1020110107. [DOI] [PubMed] [Google Scholar]
- McKim K. S., Heschl M. F., Rosenbluth R. E., Baillie D. L. Genetic organization of the unc-60 region in Caenorhabditis elegans. Genetics. 1988 Jan;118(1):49–59. doi: 10.1093/genetics/118.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Politz S. M., Philipp M., Estevez M., O'Brien P. J., Chin K. J. Genes that can be mutated to unmask hidden antigenic determinants in the cuticle of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1990 Apr;87(8):2901–2905. doi: 10.1073/pnas.87.8.2901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riddle D. L., Swanson M. M., Albert P. S. Interacting genes in nematode dauer larva formation. Nature. 1981 Apr 23;290(5808):668–671. doi: 10.1038/290668a0. [DOI] [PubMed] [Google Scholar]
- Rosenbluth R. E., Cuddeford C., Baillie D. L. Mutagenesis in Caenorhabditis elegans. II. A spectrum of mutational events induced with 1500 r of gamma-radiation. Genetics. 1985 Mar;109(3):493–511. doi: 10.1093/genetics/109.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudin W. Comparison of the cuticular structure of parasitic nematodes recognized by immunocytochemical and lectin binding studies. Acta Trop. 1990 Jul;47(5-6):255–268. doi: 10.1016/0001-706x(90)90027-w. [DOI] [PubMed] [Google Scholar]
- Sanford T., Golomb M., Riddle D. L. RNA polymerase II from wild type and alpha-amanitin-resistant strains of Caenorhabditis elegans. J Biol Chem. 1983 Nov 10;258(21):12804–12809. [PubMed] [Google Scholar]
- Schedl T., Kimble J. fog-2, a germ-line-specific sex determination gene required for hermaphrodite spermatogenesis in Caenorhabditis elegans. Genetics. 1988 May;119(1):43–61. doi: 10.1093/genetics/119.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selkirk M. E., Gregory W. F., Yazdanbakhsh M., Jenkins R. E., Maizels R. M. Cuticular localisation and turnover of the major surface glycoprotein (gp29) of adult Brugia malayi. Mol Biochem Parasitol. 1990 Aug;42(1):31–43. doi: 10.1016/0166-6851(90)90110-8. [DOI] [PubMed] [Google Scholar]
- Siddiqui S. S., Aamodt E., Rastinejad F., Culotti J. Anti-tubulin monoclonal antibodies that bind to specific neurons in Caenorhabditis elegans. J Neurosci. 1989 Aug;9(8):2963–2972. doi: 10.1523/JNEUROSCI.09-08-02963.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanley P. Glycosylation mutants of animal cells. Annu Rev Genet. 1984;18:525–552. doi: 10.1146/annurev.ge.18.120184.002521. [DOI] [PubMed] [Google Scholar]
- Stoolman L. M. Adhesion molecules controlling lymphocyte migration. Cell. 1989 Mar 24;56(6):907–910. doi: 10.1016/0092-8674(89)90620-x. [DOI] [PubMed] [Google Scholar]
- Sulston J. E., Albertson D. G., Thomson J. N. The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev Biol. 1980 Aug;78(2):542–576. doi: 10.1016/0012-1606(80)90352-8. [DOI] [PubMed] [Google Scholar]
- Trent C., Tsuing N., Horvitz H. R. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics. 1983 Aug;104(4):619–647. doi: 10.1093/genetics/104.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trent C., Wood W. B., Horvitz H. R. A novel dominant transformer allele of the sex-determining gene her-1 of Caenorhabditis elegans. Genetics. 1988 Sep;120(1):145–157. doi: 10.1093/genetics/120.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yochem J., Greenwald I. glp-1 and lin-12, genes implicated in distinct cell-cell interactions in C. elegans, encode similar transmembrane proteins. Cell. 1989 Aug 11;58(3):553–563. doi: 10.1016/0092-8674(89)90436-4. [DOI] [PubMed] [Google Scholar]
- Yochem J., Weston K., Greenwald I. The Caenorhabditis elegans lin-12 gene encodes a transmembrane protein with overall similarity to Drosophila Notch. Nature. 1988 Oct 6;335(6190):547–550. doi: 10.1038/335547a0. [DOI] [PubMed] [Google Scholar]
- Zuckerman B. M., Kahane I., Himmelhoch S. Caenorhabditis briggsae and C. elegans: partial characterization of cuticle surface carbohydrates. Exp Parasitol. 1979 Jun;47(3):419–424. doi: 10.1016/0014-4894(79)90095-x. [DOI] [PubMed] [Google Scholar]