Skip to main content
Genetics logoLink to Genetics
. 1992 Aug;131(4):905–916. doi: 10.1093/genetics/131.4.905

Single Amino Acid Exchanges in Separate Domains of the Drosophila Serendipity δ Zinc Finger Protein Cause Embryonic and Sex Biased Lethality

M Crozatier 1, K Kongsuwan 1, P Ferrer 1, J R Merriam 1, J A Lengyel 1, A Vincent 1
PMCID: PMC1205101  PMID: 1516821

Abstract

The Drosophila serendipity (sry) delta (δ) zinc finger protein is a sequence-specific DNA binding protein, maternally inherited by the embryo and present in nuclei of transcriptionally active cells throughout fly development. We report here the isolation and characterization of four ethyl methanesulfate-induced zygotic lethal mutations of different strengths in the sry δ gene. For the stronger allele, all of the lethality occurs during late embryogenesis or the first larval instar. In the cases of the three weaker alleles, most of the lethality occurs during pupation; moreover, those adult escapers that emerge are sterile males lacking partially or completely in spermatozoa bundles. Genetic analysis of sry δ thus indicates that it is an essential gene, whose continued expression throughout the life cycle, notably during embryogenesis and pupal stage, is required for viability. Phenotypic analysis of sry δ hemizygote escaper males further suggests that sry δ may be involved in regulation of two different sets of genes: genes required for viability and genes involved in gonadal development. All four sry δ alleles are fully rescued by a wild-type copy of sry δ, but not by an additional copy of the sry β gene, reinforcing the view that, although structurally related, these two genes exert distinct functions. Molecular characterization of the four sry δ mutations revealed that these mutations correspond to single amino acid replacements in the sry δ protein. Three of these replacements map to the same (third out of seven) zinc finger in the carboxy-terminal DNA binding domain; interestingly, none affects the zinc finger consensus residues. The fourth mutation is located in the NH(2)-proximal part of the protein, in a domain proposed to be involved in specific protein-protein interactions.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg J. M. Proposed structure for the zinc-binding domains from transcription factor IIIA and related proteins. Proc Natl Acad Sci U S A. 1988 Jan;85(1):99–102. doi: 10.1073/pnas.85.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berg J. M. Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J Biol Chem. 1990 Apr 25;265(12):6513–6516. [PubMed] [Google Scholar]
  3. Blumberg H., Eisen A., Sledziewski A., Bader D., Young E. T. Two zinc fingers of a yeast regulatory protein shown by genetic evidence to be essential for its function. 1987 Jul 30-Aug 5Nature. 328(6129):443–445. doi: 10.1038/328443a0. [DOI] [PubMed] [Google Scholar]
  4. Brown R. S., Sander C., Argos P. The primary structure of transcription factor TFIIIA has 12 consecutive repeats. FEBS Lett. 1985 Jul 8;186(2):271–274. doi: 10.1016/0014-5793(85)80723-7. [DOI] [PubMed] [Google Scholar]
  5. Grunstein M., Hogness D. S. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3961–3965. doi: 10.1073/pnas.72.10.3961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hariharan I. K., Carthew R. W., Rubin G. M. The Drosophila roughened mutation: activation of a rap homolog disrupts eye development and interferes with cell determination. Cell. 1991 Nov 15;67(4):717–722. doi: 10.1016/0092-8674(91)90066-8. [DOI] [PubMed] [Google Scholar]
  7. Klevit R. E. Recognition of DNA by Cys2,His2 zinc fingers. Science. 1991 Sep 20;253(5026):1367–1393. doi: 10.1126/science.1896847. [DOI] [PubMed] [Google Scholar]
  8. Kongsuwan K., Dellavalle R. P., Merriam J. R. Deficiency Analysis of the Tip of Chromosome 3R in DROSOPHILA MELANOGASTER. Genetics. 1986 Mar;112(3):539–550. doi: 10.1093/genetics/112.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kongsuwan K., Yu Q., Vincent A., Frisardi M. C., Rosbash M., Lengyel J. A., Merriam J. A Drosophila Minute gene encodes a ribosomal protein. Nature. 1985 Oct 10;317(6037):555–558. doi: 10.1038/317555a0. [DOI] [PubMed] [Google Scholar]
  10. Lee M. S., Gippert G. P., Soman K. V., Case D. A., Wright P. E. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science. 1989 Aug 11;245(4918):635–637. doi: 10.1126/science.2503871. [DOI] [PubMed] [Google Scholar]
  11. Maine E. M., Salz H. K., Cline T. W., Schedl P. The Sex-lethal gene of Drosophila: DNA alterations associated with sex-specific lethal mutations. Cell. 1985 Dec;43(2 Pt 1):521–529. doi: 10.1016/0092-8674(85)90181-3. [DOI] [PubMed] [Google Scholar]
  12. Mead D. A., Szczesna-Skorupa E., Kemper B. Single-stranded DNA 'blue' T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng. 1986 Oct-Nov;1(1):67–74. doi: 10.1093/protein/1.1.67. [DOI] [PubMed] [Google Scholar]
  13. Neuhaus D., Nakaseko Y., Nagai K., Klug A. Sequence-specific [1H]NMR resonance assignments and secondary structure identification for 1- and 2-zinc finger constructs from SW15. A hydrophobic core involving four invariant residues. FEBS Lett. 1990 Mar 26;262(2):179–184. doi: 10.1016/0014-5793(90)80184-k. [DOI] [PubMed] [Google Scholar]
  14. Pavletich N. P., Pabo C. O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. 1991 May 10;252(5007):809–817. doi: 10.1126/science.2028256. [DOI] [PubMed] [Google Scholar]
  15. Payre F., Vincent A. Finger proteins and DNA-specific recognition: distinct patterns of conserved amino acids suggest different evolutionary modes. FEBS Lett. 1988 Jul 18;234(2):245–250. doi: 10.1016/0014-5793(88)80091-7. [DOI] [PubMed] [Google Scholar]
  16. Payre F., Vincent A. Genomic targets of the serendipity beta and delta zinc finger proteins and their respective DNA recognition sites. EMBO J. 1991 Sep;10(9):2533–2541. doi: 10.1002/j.1460-2075.1991.tb07793.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Payre F., Yanicostas C., Vincent A. Serendipity delta, a Drosophila zinc finger protein present in embryonic nuclei at the onset of zygotic gene transcription. Dev Biol. 1989 Dec;136(2):469–480. doi: 10.1016/0012-1606(89)90272-8. [DOI] [PubMed] [Google Scholar]
  18. Redemann N., Gaul U., Jäckle H. Disruption of a putative Cys-zinc interaction eliminates the biological activity of the Krüppel finger protein. Nature. 1988 Mar 3;332(6159):90–92. doi: 10.1038/332090a0. [DOI] [PubMed] [Google Scholar]
  19. Roark M., Mahoney P. A., Graham M. L., Lengyel J. A. Blastoderm-differential and blastoderm-specific genes of Drosophila melanogaster. Dev Biol. 1985 Jun;109(2):476–488. doi: 10.1016/0012-1606(85)90473-7. [DOI] [PubMed] [Google Scholar]
  20. Schuh R., Aicher W., Gaul U., Côté S., Preiss A., Maier D., Seifert E., Nauber U., Schröder C., Kemler R. A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Krüppel, a Drosophila segmentation gene. Cell. 1986 Dec 26;47(6):1025–1032. doi: 10.1016/0092-8674(86)90817-2. [DOI] [PubMed] [Google Scholar]
  21. Schweisguth F., Lepesant J. A., Vincent A. The serendipity alpha gene encodes a membrane-associated protein required for the cellularization of the Drosophila embryo. Genes Dev. 1990 Jun;4(6):922–931. doi: 10.1101/gad.4.6.922. [DOI] [PubMed] [Google Scholar]
  22. Vincent A., Colot H. V., Rosbash M. Blastoderm-specific and read-through transcription of the sry alpha gene transformed into the Drosophila genome. Dev Biol. 1986 Dec;118(2):480–487. doi: 10.1016/0012-1606(86)90019-9. [DOI] [PubMed] [Google Scholar]
  23. Vincent A., Colot H. V., Rosbash M. Sequence and structure of the serendipity locus of Drosophila melanogaster. A densely transcribed region including a blastoderm-specific gene. J Mol Biol. 1985 Nov 5;186(1):149–166. doi: 10.1016/0022-2836(85)90265-7. [DOI] [PubMed] [Google Scholar]
  24. Warmke J. W., Kreuz A. J., Falkenthal S. Co-localization to chromosome bands 99E1-3 of the Drosophila melanogaster myosin light chain-2 gene and a haplo-insufficient locus that affects flight behavior. Genetics. 1989 May;122(1):139–151. doi: 10.1093/genetics/122.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yanicostas C., Vincent A., Lepesant J. A. Transcriptional and posttranscriptional regulation contributes to the sex-regulated expression of two sequence-related genes at the janus locus of Drosophila melanogaster. Mol Cell Biol. 1989 Jun;9(6):2526–2535. doi: 10.1128/mcb.9.6.2526. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES