Skip to main content
Genetics logoLink to Genetics
. 1992 Sep;132(1):241–246. doi: 10.1093/genetics/132.1.241

The Polar-Lethal Ovum Mutant Gene Maps to the Distal Portion of Mouse Chromosome 11

C Sapienza 1, J Paquette 1, P Pannunzio 1, S Albrechtson 1, K Morgan 1
PMCID: PMC1205122  PMID: 1398057

Abstract

Genome imprinting is the process by which identical alleles at a particular locus may be rendered functionally different depending on the sex of the parent contributing the allele. While several mutations in imprinted genes have been defined, no variants in the regulatory system that gives rise to imprinting have been described. Here we report our genetic analysis of the behavior of the interstrain, polar, embryonic-lethal phenotype known as the ``DDK syndrome.'' We have mapped the interstrain, polar-lethal region of the genome to the distal portion of mouse chromosome 11, near the Xmv-42 locus. We propose that the lethal phenotype is not caused by a standard mutation, but by aberrant imprinting of a gene within this region.

Full Text

The Full Text of this article is available as a PDF (579.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldacci P. A., Richoux V., Renard J. P., Guénet J. L., Babinet C. The locus Om, responsible for the DDK syndrome, maps close to Sigje on mouse chromosome 11. Mamm Genome. 1992;2(2):100–105. doi: 10.1007/BF00353857. [DOI] [PubMed] [Google Scholar]
  2. Barlow D. P., Stöger R., Herrmann B. G., Saito K., Schweifer N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature. 1991 Jan 3;349(6304):84–87. doi: 10.1038/349084a0. [DOI] [PubMed] [Google Scholar]
  3. Buehr M., Lee S., McLaren A., Warner A. Reduced gap junctional communication is associated with the lethal condition characteristic of DDK mouse eggs fertilized by foreign sperm. Development. 1987 Nov;101(3):449–459. doi: 10.1242/dev.101.3.449. [DOI] [PubMed] [Google Scholar]
  4. Cattanach B. M., Beechey C. V. Autosomal and X-chromosome imprinting. Dev Suppl. 1990:63–72. [PubMed] [Google Scholar]
  5. Cattanach B. M., Kirk M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature. 1985 Jun 6;315(6019):496–498. doi: 10.1038/315496a0. [DOI] [PubMed] [Google Scholar]
  6. Frankel W. N., Stoye J. P., Taylor B. A., Coffin J. M. A linkage map of endogenous murine leukemia proviruses. Genetics. 1990 Feb;124(2):221–236. doi: 10.1093/genetics/124.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hearne C. M., McAleer M. A., Love J. M., Aitman T. J., Cornall R. J., Ghosh S., Knight A. M., Prins J. B., Todd J. A. Additional microsatellite markers for mouse genome mapping. Mamm Genome. 1991;1(4):273–282. doi: 10.1007/BF00352339. [DOI] [PubMed] [Google Scholar]
  8. Love J. M., Knight A. M., McAleer M. A., Todd J. A. Towards construction of a high resolution map of the mouse genome using PCR-analysed microsatellites. Nucleic Acids Res. 1990 Jul 25;18(14):4123–4130. doi: 10.1093/nar/18.14.4123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mann J. R. DDK egg-foreign sperm incompatibility in mice is not between the pronuclei. J Reprod Fertil. 1986 Mar;76(2):779–781. doi: 10.1530/jrf.0.0760779. [DOI] [PubMed] [Google Scholar]
  10. Montagutelli X., Serikawa T., Guénet J. L. PCR-analyzed microsatellites: data concerning laboratory and wild-derived mouse inbred strains. Mamm Genome. 1991;1(4):255–259. doi: 10.1007/BF00352333. [DOI] [PubMed] [Google Scholar]
  11. Paquette J., Sapienza C. A reliable method for the use of oligonucleotides as probes in blot-hybridization experiments. Mamm Genome. 1992;3(1):1–4. doi: 10.1007/BF00355833. [DOI] [PubMed] [Google Scholar]
  12. Reik W., Howlett S. K., Surani M. A. Imprinting by DNA methylation: from transgenes to endogenous gene sequences. Dev Suppl. 1990:99–106. [PubMed] [Google Scholar]
  13. Renard J. P., Babinet C. Identification of a paternal developmental effect on the cytoplasm of one-cell-stage mouse embryos. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6883–6886. doi: 10.1073/pnas.83.18.6883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reuter G., Giarre M., Farah J., Gausz J., Spierer A., Spierer P. Dependence of position-effect variegation in Drosophila on dose of a gene encoding an unusual zinc-finger protein. Nature. 1990 Mar 15;344(6263):219–223. doi: 10.1038/344219a0. [DOI] [PubMed] [Google Scholar]
  15. Sapienza C. Genome imprinting and carcinogenesis. Biochim Biophys Acta. 1991 Apr 16;1072(1):51–61. doi: 10.1016/0304-419x(91)90006-7. [DOI] [PubMed] [Google Scholar]
  16. Sinclair D. A., Ruddell A. A., Brock J. K., Clegg N. J., Lloyd V. K., Grigliatti T. A. A cytogenetic and genetic characterization of a group of closely linked second chromosome mutations that suppress position-effect variegation in Drosophila melanogaster. Genetics. 1992 Feb;130(2):333–344. doi: 10.1093/genetics/130.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wakasugi N., Morita M. Studies on the development of F1 embryos from inter-strain cross involving DDK mice. J Embryol Exp Morphol. 1977 Apr;38:211–216. [PubMed] [Google Scholar]
  18. Wakasugi N. Studies on fertility of DDK mice: reciprocal crosses between DDK and C57BL/6J strains and experimental transplantation of the ovary. J Reprod Fertil. 1973 May;33(2):283–291. doi: 10.1530/jrf.0.0330283. [DOI] [PubMed] [Google Scholar]
  19. Wakasugi N., Tomita T., Kondo K. Differences of fertility in reciprocal crosses between inbred strains of mice. DDK, KK and NC. J Reprod Fertil. 1967 Feb;13(1):41–50. doi: 10.1530/jrf.0.0130041. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES