Skip to main content
Genetics logoLink to Genetics
. 1992 Sep;132(1):247–252. doi: 10.1093/genetics/132.1.247

Simulation Study of a Multigene Family, with Special Reference to the Evolution of Compensatory Advantageous Mutations

C J Basten 1, T Ohta 1
PMCID: PMC1205123  PMID: 1398058

Abstract

We investigate the evolution of a multigene family incorporating the forces of drift, mutation, gene conversion, unequal crossing over and selection. The use of simulation studies is required due to the complexity of the model. Selection is modeled in two modes: positive selection as a function of the number of different beneficial alleles and negative selection against deleterious alleles. We assume that gene conversion is unbiased, and that all mutations are initially deleterious. Compensation between mutants creates beneficial and neutral alleles, and allowances are made for compensatory mutations either within or between the members of a multigene family. We find that gene conversion can enhance the rate of acquisition of compensatory advantageous mutations when genes are redundant.

Full Text

The Full Text of this article is available as a PDF (591.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker R. S., Knight K. L. Somatic diversification of immunoglobulin heavy chain VDJ genes: evidence for somatic gene conversion in rabbits. Cell. 1990 Nov 30;63(5):987–997. doi: 10.1016/0092-8674(90)90502-6. [DOI] [PubMed] [Google Scholar]
  2. Fitch D. H., Bailey W. J., Tagle D. A., Goodman M., Sieu L., Slightom J. L. Duplication of the gamma-globin gene mediated by L1 long interspersed repetitive elements in an early ancestor of simian primates. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7396–7400. doi: 10.1073/pnas.88.16.7396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gelbart W. M., Chovnick A. Spontaneous unequal exchange in the rosy region of Drosophila melanogaster. Genetics. 1979 Jul;92(3):849–859. doi: 10.1093/genetics/92.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hibner B. L., Burke W. D., Eickbush T. H. Sequence identity in an early chorion multigene family is the result of localized gene conversion. Genetics. 1991 Jul;128(3):595–606. doi: 10.1093/genetics/128.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Irwin D. M., Wilson A. C. Concerted evolution of ruminant stomach lysozymes. Characterization of lysozyme cDNA clones from sheep and deer. J Biol Chem. 1990 Mar 25;265(9):4944–4952. [PubMed] [Google Scholar]
  6. Jollès J., Jollès P., Bowman B. H., Prager E. M., Stewart C. B., Wilson A. C. Episodic evolution in the stomach lysozymes of ruminants. J Mol Evol. 1989 Jun;28(6):528–535. doi: 10.1007/BF02602933. [DOI] [PubMed] [Google Scholar]
  7. Maeda N., Smithies O. The evolution of multigene families: human haptoglobin genes. Annu Rev Genet. 1986;20:81–108. doi: 10.1146/annurev.ge.20.120186.000501. [DOI] [PubMed] [Google Scholar]
  8. Maizels N. Might gene conversion be the mechanism of somatic hypermutation of mammalian immunoglobulin genes? Trends Genet. 1989 Jan;5(1):4–8. doi: 10.1016/0168-9525(89)90004-8. [DOI] [PubMed] [Google Scholar]
  9. Maroni G., Wise J., Young J. E., Otto E. Metallothionein gene duplications and metal tolerance in natural populations of Drosophila melanogaster. Genetics. 1987 Dec;117(4):739–744. doi: 10.1093/genetics/117.4.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ohta T. Evolution by gene duplication and compensatory advantageous mutations. Genetics. 1988 Nov;120(3):841–847. doi: 10.1093/genetics/120.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ohta T. Simulating evolution by gene duplication. Genetics. 1987 Jan;115(1):207–213. doi: 10.1093/genetics/115.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ohta T. Time for acquiring a new gene by duplication. Proc Natl Acad Sci U S A. 1988 May;85(10):3509–3512. doi: 10.1073/pnas.85.10.3509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ohta T. Time for spreading of compensatory mutations under gene duplication. Genetics. 1989 Nov;123(3):579–584. doi: 10.1093/genetics/123.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reynaud C. A., Anquez V., Grimal H., Weill J. C. A hyperconversion mechanism generates the chicken light chain preimmune repertoire. Cell. 1987 Feb 13;48(3):379–388. doi: 10.1016/0092-8674(87)90189-9. [DOI] [PubMed] [Google Scholar]
  15. Shapira S. K., Finnerty V. G. The use of genetic complementation in the study of eukaryotic macromolecular evolution: rate of spontaneous gene duplication at two loci of Drosophila melanogaster. J Mol Evol. 1986;23(2):159–167. doi: 10.1007/BF02099910. [DOI] [PubMed] [Google Scholar]
  16. Smithies O., Powers P. A. Gene conversions and their relation to homologous chromosome pairing. Philos Trans R Soc Lond B Biol Sci. 1986 Jan 29;312(1154):291–302. doi: 10.1098/rstb.1986.0008. [DOI] [PubMed] [Google Scholar]
  17. Stewart C. B., Schilling J. W., Wilson A. C. Adaptive evolution in the stomach lysozymes of foregut fermenters. 1987 Nov 26-Dec 2Nature. 330(6146):401–404. doi: 10.1038/330401a0. [DOI] [PubMed] [Google Scholar]
  18. Voelkel-Meiman K., Roeder G. S. Gene conversion tracts stimulated by HOT1-promoted transcription are long and continuous. Genetics. 1990 Dec;126(4):851–867. doi: 10.1093/genetics/126.4.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wines D. R., Brady J. M., Southard E. M., MacDonald R. J. Evolution of the rat kallikrein gene family: gene conversion leads to functional diversity. J Mol Evol. 1991 Jun;32(6):476–492. doi: 10.1007/BF02102650. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES