Skip to main content
Genetics logoLink to Genetics
. 1992 Oct;132(2):545–551. doi: 10.1093/genetics/132.2.545

Oxygen Association-Dissociation and Stability Analysis on Mouse Hemoglobins with Mutant α- and β-Globins

S J D'Surney 1, R A Popp 1
PMCID: PMC1205155  PMID: 1427042

Abstract

Oxygen association-dissociation and hemoglobin stability analysis were performed on mouse hemoglobins with amino acid substitutions in an α-globin (α89, His to Leu) and a β-globin (β59, Lys to Ile). The variant α-globin, designated chain 5(m) in the Hba(g2) haplotype, had a high oxygen affinity and was stable. The variant β-globin, (β(s2)) of the Hbb(s2) haplotype, also had an elevated oxygen affinity and in addition was moderately unstable in 19% isopropanol. Hemoglobins from the expected nine (Hba(g2)/Hba(g2);Hbb(s)/Hbb(s) X Hba(a)/Hba(a);Hbb(s2)/Hbb(s2)) F(2) genotypes can be grouped into five classes of P(50) values characterized by strict additivity and dependency on mutant globin gene dosage; physiologically, both globin variants gave indistinguishable effects on oxygen affinity. The hemoglobin of normal mice (Hba(a)/Hba(a);Hbb(s)/Hbb(s)) had a P(50) = 40 mm Hg and the hemoglobin of Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) F(2) mice had a P(50) = 25 mm Hg (human P(50) = 26 mm Hg). Peripheral blood from Hba(g2)/Hba(g2);Hbb(s)/Hbb(s), Hba(a)/Hba(a);Hbb(s2)/Hbb(s2) and Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) mice exhibited normal hematological values except for a slightly higher hematocrit for Hba(g2)/Hba(g2);Hbb(s)/Hbb(s) and Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) mice, slightly elevated red cell counts for mice of the three mutant genotypes, and significantly lower values for the mean corpuscular volume and mean corpuscular hemoglobin for Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) mice.

Full Text

The Full Text of this article is available as a PDF (683.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENESCH R., MACDUFF G., BENESCH R. E. DETERMINATION OF OXYGEN EQUILIBRIA WITH A VERSATILE NEW TONOMETER. Anal Biochem. 1965 Apr;11:81–87. doi: 10.1016/0003-2697(65)90045-x. [DOI] [PubMed] [Google Scholar]
  2. Brennan S. O., Wells R. M., Smith H., Carrell R. W. Hemoglobin Brisbane: beta68 Leu replaced by His. A new high oxygen affinity variant. Hemoglobin. 1981;5(4):325–335. doi: 10.3109/03630268108991807. [DOI] [PubMed] [Google Scholar]
  3. Carrell R. W., Kay R. A simple method for the detection of unstable haemoglobins. Br J Haematol. 1972 Nov;23(5):615–619. doi: 10.1111/j.1365-2141.1972.tb07096.x. [DOI] [PubMed] [Google Scholar]
  4. DACIE J. V., GRIMES A. J., MEISLER A., STEINGOLD L., HEMSTED E. H., BEAVEN G. H., WHITE J. C. HEREDITARY HEINZ-BODY ANAEMIA. A REPORT OF STUDIES ON FIVE PATIENTS WITH MILD ANAEMIA. Br J Haematol. 1964 Jul;10:388–402. doi: 10.1111/j.1365-2141.1964.tb00715.x. [DOI] [PubMed] [Google Scholar]
  5. Dacie J. V., Shinton N. K., Gaffney P. J., Jr, Lehmann H. Haemoglobin Hammersmith (beta-42 (CDI) Phe replaced by ser). Nature. 1967 Nov 18;216(5116):663–665. doi: 10.1038/216663a0. [DOI] [PubMed] [Google Scholar]
  6. Festa R. S., Asakura T. The use of an oxygen dissociation curve analyzer in transfusion therapy. Transfusion. 1979 Mar-Apr;19(2):107–113. doi: 10.1046/j.1537-2995.1979.19279160278.x. [DOI] [PubMed] [Google Scholar]
  7. Lewis S. E., Johnson F. M., Skow L. C., Popp D., Barnett L. B., Popp R. A. A mutation in the beta-globin gene detected in the progeny of a female mouse treated with ethylnitrosourea. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5829–5831. doi: 10.1073/pnas.82.17.5829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Newton M. F., Peters J. Physiological variation of mouse haemoglobins. Proc R Soc Lond B Biol Sci. 1983 Jul 22;218(1213):443–453. doi: 10.1098/rspb.1983.0050. [DOI] [PubMed] [Google Scholar]
  9. Perutz M. F. Stereochemical mechanism of oxygen transport by haemoglobin. Proc R Soc Lond B Biol Sci. 1980 Jun 24;208(1171):135–162. doi: 10.1098/rspb.1980.0047. [DOI] [PubMed] [Google Scholar]
  10. Peters J., Andrews S. J., Loutit J. F., Clegg J. B. A mouse beta-globin mutant that is an exact model of hemoglobin Rainier in man. Genetics. 1985 Aug;110(4):709–721. doi: 10.1093/genetics/110.4.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Popp D. M., Popp R. A., Lock S., Mann R. C., Hand R. E., Jr Use of multiparameter analysis to quantitate hematological damage from exposure to a chemical (ethylene oxide). J Toxicol Environ Health. 1986;18(4):543–565. doi: 10.1080/15287398609530893. [DOI] [PubMed] [Google Scholar]
  12. Popp R. A., Bailiff E. G., Skow L. C., Johnson F. M., Lewis S. E. Analysis of a mouse alpha-globin gene mutation induced by ethylnitrosourea. Genetics. 1983 Sep;105(1):157–167. doi: 10.1093/genetics/105.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Steadman J. H., Yates A., Huehns E. R. Idiopathic Heinz body anaemia: Hb-Bristol (beta67 (E11) Val to Asp). Br J Haematol. 1970 Apr;18(4):435–446. doi: 10.1111/j.1365-2141.1970.tb01457.x. [DOI] [PubMed] [Google Scholar]
  14. Wawrzyniak C. J., Popp R. A. Use of a new mouse beta-globin haplotype (Hbbs2) to study hemoglobin expression during development. Dev Biol. 1985 Dec;112(2):477–484. doi: 10.1016/0012-1606(85)90420-8. [DOI] [PubMed] [Google Scholar]
  15. Whitney J. B., 3rd, Copland G. T., Skow L. C., Russell E. S. Resolution of products of the duplicated hemoglobin alpha-chain loci by isoelectric focusing. Proc Natl Acad Sci U S A. 1979 Feb;76(2):867–871. doi: 10.1073/pnas.76.2.867. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES