Abstract
Apparent stabilizing selection on a quantitative trait that is not causally connected to fitness can result from the pleiotropic effects of unconditionally deleterious mutations, because as N. Barton noted, ``... individuals with extreme values of the trait will tend to carry more deleterious alleles ....'' We use a simple model to investigate the dependence of this apparent selection on the genomic deleterious mutation rate, U; the equilibrium distribution of K, the number of deleterious mutations per genome; and the parameters describing directional selection against deleterious mutations. Unlike previous analyses, we allow for epistatic selection against deleterious alleles. For various selection functions and realistic parameter values, the distribution of K, the distribution of breeding values for a pleiotropically affected trait, and the apparent stabilizing selection function are all nearly Gaussian. The additive genetic variance for the quantitative trait is kQa(2), where k is the average number of deleterious mutations per genome, Q is the proportion of deleterious mutations that affect the trait, and a(2) is the variance of pleiotropic effects for individual mutations that do affect the trait. In contrast, when the trait is measured in units of its additive standard deviation, the apparent fitness function is essentially independent of Q and a(2); and β, the intensity of selection, measured as the ratio of additive genetic variance to the ``variance'' of the fitness curve, is very close to s = U/k, the selection coefficient against individual deleterious mutations at equilibrium. Therefore, this model predicts appreciable apparent stabilizing selection if s exceeds about 0.03, which is consistent with various data. However, the model also predicts that β must equal V(m)/V(G), the ratio of new additive variance for the trait introduced each generation by mutation to the standing additive variance. Most, although not all, estimates of this ratio imply apparent stabilizing selection weaker than generally observed. A qualitative argument suggests that even when direct selection is responsible for most of the selection observed on a character, it may be essentially irrelevant to the maintenance of variation for the character by mutation-selection balance. Simple experiments can indicate the fraction of observed stabilizing selection attributable to the pleiotropic effects of deleterious mutations.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barton N. H. Pleiotropic models of quantitative variation. Genetics. 1990 Mar;124(3):773–782. doi: 10.1093/genetics/124.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barton N. H., Turelli M. Adaptive landscapes, genetic distance and the evolution of quantitative characters. Genet Res. 1987 Apr;49(2):157–173. doi: 10.1017/s0016672300026951. [DOI] [PubMed] [Google Scholar]
- Barton N. H., Turelli M. Evolutionary quantitative genetics: how little do we know? Annu Rev Genet. 1989;23:337–370. doi: 10.1146/annurev.ge.23.120189.002005. [DOI] [PubMed] [Google Scholar]
- Barton N. The divergence of a polygenic system subject to stabilizing selection, mutation and drift. Genet Res. 1989 Aug;54(1):59–77. doi: 10.1017/s0016672300028378. [DOI] [PubMed] [Google Scholar]
- Bulmer M. G. The maintenance of the genetic variability of polygenic characters by heterozygous advantage. Genet Res. 1973 Aug;22(1):9–12. [PubMed] [Google Scholar]
- Caccone A., Amato G. D., Powell J. R. Rates and patterns of scnDNA and mtDNA divergence within the Drosophila melanogaster subgroup. Genetics. 1988 Apr;118(4):671–683. doi: 10.1093/genetics/118.4.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charlesworth B., Langley C. H. The population genetics of Drosophila transposable elements. Annu Rev Genet. 1989;23:251–287. doi: 10.1146/annurev.ge.23.120189.001343. [DOI] [PubMed] [Google Scholar]
- Charlesworth B. Mutation-selection balance and the evolutionary advantage of sex and recombination. Genet Res. 1990 Jun;55(3):199–221. doi: 10.1017/s0016672300025532. [DOI] [PubMed] [Google Scholar]
- Coyne J. A., Beecham E. Heritability of two morphological characters within and among natural populations of Drosophila melanogaster. Genetics. 1987 Dec;117(4):727–737. doi: 10.1093/genetics/117.4.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillespie J. H. Pleiotropic overdominance and the maintenance of genetic variation in polygenic characters. Genetics. 1984 Jun;107(2):321–330. doi: 10.1093/genetics/107.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gimelfarb A. Pleiotropy and multilocus polymorphisms. Genetics. 1992 Jan;130(1):223–227. doi: 10.1093/genetics/130.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harada K., Yukuhiro K., Mukai T. Transposition rates of movable genetic elements in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3248–3252. doi: 10.1073/pnas.87.8.3248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hastings A. Second-order approximations for selection coefficients at polygenic loci. J Math Biol. 1990;28(4):475–483. doi: 10.1007/BF00178330. [DOI] [PubMed] [Google Scholar]
- Hill W. G. Predictions of response to artificial selection from new mutations. Genet Res. 1982 Dec;40(3):255–278. doi: 10.1017/s0016672300019145. [DOI] [PubMed] [Google Scholar]
- Keightley P. D., Hill W. G. Quantitative genetic variability maintained by mutation-stabilizing selection balance in finite populations. Genet Res. 1988 Aug;52(1):33–43. doi: 10.1017/s0016672300027282. [DOI] [PubMed] [Google Scholar]
- Kimura M., Crow J. F. Effect of overall phenotypic selection on genetic change at individual loci. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6168–6171. doi: 10.1073/pnas.75.12.6168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M., Maruyama T. The mutational load with epistatic gene interactions in fitness. Genetics. 1966 Dec;54(6):1337–1351. doi: 10.1093/genetics/54.6.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kondrashov A. S. Deleterious mutations and the evolution of sexual reproduction. Nature. 1988 Dec 1;336(6198):435–440. doi: 10.1038/336435a0. [DOI] [PubMed] [Google Scholar]
- Kondrashov A. S. Deleterious mutations as an evolutionary factor. 1. The advantage of recombination. Genet Res. 1984 Oct;44(2):199–217. doi: 10.1017/s0016672300026392. [DOI] [PubMed] [Google Scholar]
- Kondrashov A. S. Selection against harmful mutations in large sexual and asexual populations. Genet Res. 1982 Dec;40(3):325–332. doi: 10.1017/s0016672300019194. [DOI] [PubMed] [Google Scholar]
- Lande R. The Genetic Covariance between Characters Maintained by Pleiotropic Mutations. Genetics. 1980 Jan;94(1):203–215. doi: 10.1093/genetics/94.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li W. H., Sadler L. A. Low nucleotide diversity in man. Genetics. 1991 Oct;129(2):513–523. doi: 10.1093/genetics/129.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linney R., Barnes B. W., Kearsey M. J. Variation for metrical characters in drosophila populations. 3. The nature of selection. Heredity (Edinb) 1971 Oct;27(2):163–174. doi: 10.1038/hdy.1971.82. [DOI] [PubMed] [Google Scholar]
- Lynch M. The rate of polygenic mutation. Genet Res. 1988 Apr;51(2):137–148. doi: 10.1017/s0016672300024150. [DOI] [PubMed] [Google Scholar]
- Mackay T. F., Langley C. H. Molecular and phenotypic variation in the achaete-scute region of Drosophila melanogaster. Nature. 1990 Nov 1;348(6296):64–66. doi: 10.1038/348064a0. [DOI] [PubMed] [Google Scholar]
- Mackay T. F., Lyman R. F., Jackson M. S. Effects of P element insertions on quantitative traits in Drosophila melanogaster. Genetics. 1992 Feb;130(2):315–332. doi: 10.1093/genetics/130.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Price T. D., Grant P. R., Gibbs H. L., Boag P. T. Recurrent patterns of natural selection in a population of Darwin's finches. 1984 Jun 28-Jul 4Nature. 309(5971):787–789. doi: 10.1038/309787a0. [DOI] [PubMed] [Google Scholar]
- Rowan R. G., Hunt J. A. Rates of DNA change and phylogeny from the DNA sequences of the alcohol dehydrogenase gene for five closely related species of Hawaiian Drosophila. Mol Biol Evol. 1991 Jan;8(1):49–70. doi: 10.1093/oxfordjournals.molbev.a040636. [DOI] [PubMed] [Google Scholar]
- Simmons M. J., Crow J. F. Mutations affecting fitness in Drosophila populations. Annu Rev Genet. 1977;11:49–78. doi: 10.1146/annurev.ge.11.120177.000405. [DOI] [PubMed] [Google Scholar]
- Slatkin M., Frank S. A. The quantitative genetic consequences of pleiotropy under stabilizing and directional selection. Genetics. 1990 May;125(1):207–213. doi: 10.1093/genetics/125.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turelli M. Effects of pleiotropy on predictions concerning mutation-selection balance for polygenic traits. Genetics. 1985 Sep;111(1):165–195. doi: 10.1093/genetics/111.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turelli M. Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. Theor Popul Biol. 1984 Apr;25(2):138–193. doi: 10.1016/0040-5809(84)90017-0. [DOI] [PubMed] [Google Scholar]
- Wagner G. P. Multivariate mutation-selection balance with constrained pleiotropic effects. Genetics. 1989 May;122(1):223–234. doi: 10.1093/genetics/122.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]