Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- AISENBERG A. C., POTTER V. R. Effect of fluoride and dinitrophenol on acetate activation in kidney and liver homogenates. J Biol Chem. 1955 Aug;215(2):737–749. [PubMed] [Google Scholar]
- ALDRIDGE W. N. Liver and brain mitochondria. Biochem J. 1957 Nov;67(3):423–431. doi: 10.1042/bj0670423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BIRT L. M., BARTLEY W. The behaviour of pyridine nucleotides of mitochondria in a 'saline medium'. Biochem J. 1960 Aug;76:328–341. doi: 10.1042/bj0760328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHANCE B., HOLLUNGER G. Energy-linked reduction of mitochondrial pyridine nucleotide. Nature. 1960 Mar 5;185:666–672. doi: 10.1038/185666a0. [DOI] [PubMed] [Google Scholar]
- Edson N. L. Ketogenesis-antiketogenesis: The influence of ammonium chloride on ketone-body formation in liver. Biochem J. 1935 Sep;29(9):2082–2094. doi: 10.1042/bj0292082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREEN D. E., GOLDMAN D. S., MII S., BEINERT H. The acetoacetate activation and cleavage enzyme system. J Biol Chem. 1953 May;202(1):137–150. [PubMed] [Google Scholar]
- Green D. E., Needham D. M., Dewan J. G. Dismutations and oxidoreductions. Biochem J. 1937 Dec;31(12):2327–2352. doi: 10.1042/bj0312327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUNTER F. E., Jr, HIXON W. S. Phosphorylation coupled with the oxidation of alpha-ketoglutaric acid. J Biol Chem. 1949 Nov;181(1):73–79. [PubMed] [Google Scholar]
- KLINGENBERG M., SLENCZKA W., RITT E. [Comparative biochemistry of the pyridine nucleotide system in the mitochondria of various organs]. Biochem Z. 1959;332:47–66. [PubMed] [Google Scholar]
- KREBS H. A., KORNBERG H. L., BURTON K. A survey of the energy transformations in living matter. Ergeb Physiol. 1957;49:212–298. [PubMed] [Google Scholar]
- KREBS H. Biochemical aspects of ketosis. Proc R Soc Med. 1960 Feb;53:71–80. [PMC free article] [PubMed] [Google Scholar]
- Krebs H. A., Eggleston L. V. Metabolism of acetoacetate in animal tissues. 1. Biochem J. 1945;39(5):408–419. [PMC free article] [PubMed] [Google Scholar]
- Krebs H. A., Eggleston L. V. Metabolism of acetoacetate in animal tissues. 2. Biochem J. 1948;42(2):294–305. [PMC free article] [PubMed] [Google Scholar]
- LARDY H. A., WELLMAN H. Oxidative phosphorylations; rôle of inorganic phosphate and acceptor systems in control of metabolic rates. J Biol Chem. 1952 Mar;195(1):215–224. [PubMed] [Google Scholar]
- LEHNINGER A. L., GREVILLE G. D. The enzymic oxidation of alpha- and 2-beta-hydroxybutyrate. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):188–202. doi: 10.1016/0006-3002(53)90138-3. [DOI] [PubMed] [Google Scholar]
- MARTIUS C., NITZ-LITZOW D. Uber den Wirkungsmechanismus des Dicumarols und verwandter Verbindungen. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):134–140. doi: 10.1016/0006-3002(53)90132-2. [DOI] [PubMed] [Google Scholar]
- MCCANN W. P. The oxidation of ketone bodies by mitochondria from liver and peripheral tissues. J Biol Chem. 1957 May;226(1):15–22. [PubMed] [Google Scholar]
- STERN J. R., COON M. J., DEL CAMPILLO A., SCHNEIDER M. C. Enzymes of fatty acid metabolism. IV. Preparation and properties of coenzyme A transferase. J Biol Chem. 1956 Jul;221(1):15–31. [PubMed] [Google Scholar]
- STERN J. R., OCHOA S. Enzymatic synthesis of citric acid. I. Synthesis with soluble enzymes. J Biol Chem. 1951 Jul;191(1):161–172. [PubMed] [Google Scholar]
- TYLER D. B. Some factors affecting the action of 2,4-dinitrophenol on the oxygen uptake of excised rat brain. J Biol Chem. 1950 Jun;184(2):711–718. [PubMed] [Google Scholar]
- WALKER P. G. A colorimetric method for the estimation of acetoacetate. Biochem J. 1954 Dec;58(4):699–704. doi: 10.1042/bj0580699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WITTER R. F., NEWCOMB E. H., STOTZ E. Studies of the mechanism of action of dinitrophenol. J Biol Chem. 1953 May;202(1):291–303. [PubMed] [Google Scholar]