Skip to main content
Genetics logoLink to Genetics
. 1992 Nov;132(3):783–787. doi: 10.1093/genetics/132.3.783

Direct Measurement of in Vivo Flux Differences between Electrophoretic Variants of G6pd from Drosophila Melanogaster

J Labate 1, W F Eanes 1
PMCID: PMC1205214  PMID: 1468630

Abstract

Demonstrating that naturally occurring enzyme polymorphisms significantly impact metabolic pathway flux is a fundamental step in examining the possible adaptive significance of such polymorphisms. In earlier studies of the glucose-6-phosphate dehydrogenase (G6PD) polymorphism in Drosophila melanogaster, we used two different methods, exploiting both genotype-dependent interactions with the 6Pgd locus, and conventional steady-stake kinetics to examine activity differences between the two common allozymes. In this report we use 1-(14)C- and 6-(14)C-labeled glucose to estimate directly genotype-dependent flux differences through the pentose shunt. Our results show the G6pd(A) genotype possesses statistically lower pentose shunt flux than G6pd(B) at 25°. We estimate this to be about a 32% reduction, which is consistent with the two former studies. These results reflect a significant responsiveness of pentose shunt flux to activity variation at the G6PD-catalyzed step, and predict that the G6PD allozymes generate a polymorphism for pentose shunt flux.

Full Text

The Full Text of this article is available as a PDF (540.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allendorf F. W., Knudsen K. L., Blake G. M. Frequencies of null alleles at enzyme Loci in natural populations of ponderosa and red pine. Genetics. 1982 Mar;100(3):497–504. doi: 10.1093/genetics/100.3.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bijlsma R., van der Meulen-Bruijns C. Polymorphism at the G6pd and 6Pgd loci in Drosophila melanogaster. III. Developmental and biochemical aspects. Biochem Genet. 1979 Dec;17(11-12):1131–1144. doi: 10.1007/BF00504350. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Cavener D. R., Clegg M. T. Evidence for biochemical and physiological differences between enzyme genotypes in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4444–4447. doi: 10.1073/pnas.78.7.4444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark A. G. Causes and consequences of variation in energy storage in Drosophila melanogaster. Genetics. 1989 Sep;123(1):131–144. doi: 10.1093/genetics/123.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eanes W. F., Ajioka J. W., Hey J., Wesley C. Restriction-map variation associated with the G6PD polymorphism in natural populations of Drosophila melanogaster. Mol Biol Evol. 1989 Jul;6(4):384–397. doi: 10.1093/oxfordjournals.molbev.a040555. [DOI] [PubMed] [Google Scholar]
  7. Eanes W. F., Bingham B., Hey J., Houle D. Targeted selection experiments and enzyme polymorphism: negative evidence for octanoate selection at the G6PD locus in Drosophila melanogaster. Genetics. 1985 Feb;109(2):379–391. doi: 10.1093/genetics/109.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eanes W. F., Hey J. IN VIVO Function of Rare G6pd Variants from Natural Populations of DROSOPHILA MELANOGASTER. Genetics. 1986 Jul;113(3):679–693. doi: 10.1093/genetics/113.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eanes W. F., Katona L., Longtine M. Comparison of in vitro and in vivo activities associated with the G6PD allozyme polymorphism in Drosophila melanogaster. Genetics. 1990 Aug;125(4):845–853. doi: 10.1093/genetics/125.4.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eanes W. F. Viability interactions, in vivo activity and the G6PD polymorphism in Drosophila melanogaster. Genetics. 1984 Jan;106(1):95–107. doi: 10.1093/genetics/106.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Freriksen A., Seykens D., Scharloo W., Heinstra P. W. Alcohol dehydrogenase controls the flux from ethanol into lipids in Drosophila larvae. A 13C NMR study. J Biol Chem. 1991 Nov 15;266(32):21399–21403. [PubMed] [Google Scholar]
  12. Ganguly R., Ganguly N., Manning J. E. Isolation and characterization of the glucose-6-phosphate dehydrogenase gene of Drosophila melanogaster. Gene. 1985;35(1-2):91–101. doi: 10.1016/0378-1119(85)90161-1. [DOI] [PubMed] [Google Scholar]
  13. Geer B. W., Bowman J. T., Simmons J. R. The pentose shunt in wild-type and glucose-6-phosphate dehydrogenase deficient Drosophila melanogaster. J Exp Zool. 1974 Jan;187(1):77–86. doi: 10.1002/jez.1401870110. [DOI] [PubMed] [Google Scholar]
  14. Geer B. W., Lindel D. L., Lindel D. M. Relationship of the oxidative pentose shunt pathway to lipid synthesis in Drosophila melanogaster. Biochem Genet. 1979 Oct;17(9-10):881–895. doi: 10.1007/BF00504310. [DOI] [PubMed] [Google Scholar]
  15. Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Middleton R. J., Kacser H. Enzyme variation, metabolic flux and fitness: alcohol dehydrogenase in Drosophila melanogaster. Genetics. 1983 Nov;105(3):633–650. doi: 10.1093/genetics/105.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miyashita N., Laurie-Ahlberg C. C., Wilton A. N., Emigh T. H. Quantitative analysis of X chromosome effects on the activities of the glucose 6-phosphate and 6-phosphogluconate dehydrogenases of Drosophila melanogaster. Genetics. 1986 Jun;113(2):321–335. doi: 10.1093/genetics/113.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Steele M. W., Young W. J., Childs B. Glucose 6-phosphate dehydrogenase in Drosophila malanogaster: starch gel electrophoretic variation due to molecular instability. Biochem Genet. 1968 Sep;2(2):159–175. doi: 10.1007/BF01458714. [DOI] [PubMed] [Google Scholar]
  19. Voelker R. A., Langley C. H., Brown A. J., Ohnishi S., Dickson B., Montgomery E., Smith S. C. Enzyme null alleles in natural populations of Drosophila melanogaster: Frequencies in a North Carolina population. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1091–1095. doi: 10.1073/pnas.77.2.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. WOOD H. G., KATZ J., LANDAU B. R. ESTIMATION OF PATHWAYS OF CARBOHYDRATE METABOLISM. Biochem Z. 1963;338:809–847. [PubMed] [Google Scholar]
  21. Williamson J. H., Bentley M. M. Comparative properties of three forms of glucose-6-phosphate dehydrogenase in Drosophila melanogaster. Biochem Genet. 1983 Dec;21(11-12):1153–1166. doi: 10.1007/BF00488467. [DOI] [PubMed] [Google Scholar]
  22. YOUNG W. J., PORTER J. E., CHILDS B. GLUCOSE-6-PHOSPHATE DEHYDROGENASE IN DROSOPHILA: X-LINKED ELECTROPHORETIC VARIANTS. Science. 1964 Jan 10;143(3602):140–141. doi: 10.1126/science.143.3602.140. [DOI] [PubMed] [Google Scholar]
  23. Zamer W. E., Hoffmann R. J. Allozymes of glucose-6-phosphate isomerase differentially modulate pentose-shunt metabolism in the sea anemone Metridium senile. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2737–2741. doi: 10.1073/pnas.86.8.2737. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES