Abstract
Population studies at the b-locus of the ``constant'' regions of the rabbit immunoglobulin K1 light chain (c(k1)) revealed patterns of gene diversity resembling those that mark the peculiar nature of the major histocompatibility complex, such as large number of alleles, high heterozygosity levels, consistent excess of heterozygous individuals and long allele coalescence times. This paper documents the evolutionary patterns at the b-locus as inferred from DNA sequence comparisons. Among alleles, synonymous substitutions outnumbered expectations for neutral alleles by an order of magnitude. They were distributed randomly throughout the c(k1) coding region while interallelic amino acid differences did cluster into segments overlapping with the regions exposed to the solvent. Within these regions, acceptance rates of mutation at amino acid replacement sites were even higher than those at synonymous sites (d(r)/d(s) = 1.6-3.0), while in the intervals between these regions the opposite was found (d(r)/d(s) & 0.3). Under the assumption that allelic variation is adaptive at the molecular surface, the divergence patterns at the b-locus are therefore very similar to those reported for the major histocompatibility complex. An analysis at the quasi silent bas-locus (c(k2)), which is linked to the b-locus, and comparisons among genes of the ``variable'' region of the K1 light chains (v(k1)), revealed patterns of divergence which differed markedly from those observed at the c(k1) constant regions. It is suggested that allelic variability at immunoglobulin constant regions can be due to mechanisms similar to those enhancing diversity at histocompatibility loci.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akimenko M. A., Heidmann O., Rougeon F. Complex allotypes of the rabbit immunoglobulin kappa light chains are encoded by structural alleles. Nucleic Acids Res. 1984 Jun 11;12(11):4691–4701. doi: 10.1093/nar/12.11.4691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akimenko M. A., Mariamé B., Rougeon F. Evolution of the immunoglobulin kappa light chain locus in the rabbit: evidence for differential gene conversion events. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5180–5183. doi: 10.1073/pnas.83.14.5180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benammar A., Cazenave P. A. B 96, a seventh allele at the rabbit kappa chain b locus. Eur J Immunol. 1981 Apr;11(4):344–346. doi: 10.1002/eji.1830110416. [DOI] [PubMed] [Google Scholar]
- Bernstein K. E., Lamoyi E., McCartney-Francis N., Mage R. G. Sequence of a cDNA encoding Basilea kappa light chains (K2 isotype) suggests a possible relationship of protein structure to limited expression. J Exp Med. 1984 Feb 1;159(2):635–640. doi: 10.1084/jem.159.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernstein K. E., Skurla R. M., Jr, Mage R. G. The sequences of rabbit kappa light chains of b4 and b5 allotypes differ more in their constant regions than in their 3' untranslated regions. Nucleic Acids Res. 1983 Oct 25;11(20):7205–7214. doi: 10.1093/nar/11.20.7205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bodmer W. F. Evolutionary significance of the HL-A system. Nature. 1972 May 19;237(5351):139–passim. doi: 10.1038/237139a0. [DOI] [PubMed] [Google Scholar]
- Emorine L., Sogn J. A., Trinh D., Kindt T. J., Max E. E. A genomic gene encoding the b5 rabbit immunoglobulin kappa constant region: implications for latent allotype phenomenon. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1789–1793. doi: 10.1073/pnas.81.6.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujiyama Y., Kobayashi K., Senda S., Benno Y., Bamba T., Hosoda S. A novel IgA protease from Clostridium sp. capable of cleaving IgA1 and IgA2 A2m(1) but not IgA2 A2m(2) allotype paraproteins. J Immunol. 1985 Jan;134(1):573–576. [PubMed] [Google Scholar]
- Hamilton W. D., Axelrod R., Tanese R. Sexual reproduction as an adaptation to resist parasites (a review). Proc Natl Acad Sci U S A. 1990 May;87(9):3566–3573. doi: 10.1073/pnas.87.9.3566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashida H., Miyata T. Unusual evolutionary conservation and frequent DNA segment exchange in class I genes of the major histocompatibility complex. Proc Natl Acad Sci U S A. 1983 May;80(9):2671–2675. doi: 10.1073/pnas.80.9.2671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heidmann O., Rougeon F. Immunoglobulin kappa light-chain diversity in rabbit is based on the 3' length heterogeneity of germ-line variable genes. Nature. 1984 Sep 6;311(5981):74–76. doi: 10.1038/311074a0. [DOI] [PubMed] [Google Scholar]
- Hieter P. A., Max E. E., Seidman J. G., Maizel J. V., Jr, Leder P. Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments. Cell. 1980 Nov;22(1 Pt 1):197–207. doi: 10.1016/0092-8674(80)90168-3. [DOI] [PubMed] [Google Scholar]
- Hopp T. P., Woods K. R. Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3824–3828. doi: 10.1073/pnas.78.6.3824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard J. C. Immunology. Disease and evolution. Nature. 1991 Aug 15;352(6336):565–567. doi: 10.1038/352565a0. [DOI] [PubMed] [Google Scholar]
- Hughes A. L., Nei M. Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci U S A. 1989 Feb;86(3):958–962. doi: 10.1073/pnas.86.3.958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes A. L., Nei M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature. 1988 Sep 8;335(6186):167–170. doi: 10.1038/335167a0. [DOI] [PubMed] [Google Scholar]
- Irwin D. M., Kocher T. D., Wilson A. C. Evolution of the cytochrome b gene of mammals. J Mol Evol. 1991 Feb;32(2):128–144. doi: 10.1007/BF02515385. [DOI] [PubMed] [Google Scholar]
- Kelus A. S., Weiss S. Variant strain of rabbits lacking immunoglobulin kappa polypeptide chain. Nature. 1977 Jan 13;265(5590):156–158. doi: 10.1038/265156a0. [DOI] [PubMed] [Google Scholar]
- Li W. H., Gouy M., Sharp P. M., O'hUigin C., Yang Y. W. Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6703–6707. doi: 10.1073/pnas.87.17.6703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lieberman R., Emorine L., Max E. E. Structure of a germline rabbit immunoglobulin V kappa-region gene: implications for rabbit V kappa-J kappa recombination. J Immunol. 1984 Nov;133(5):2753–2756. [PubMed] [Google Scholar]
- Mage R. G., McCartney-Francis N. L., Komatsu M., Lamoyi E. Evolution of genes for allelic and isotypic forms of immunoglobulin kappa chains and of the genes for T-cell receptor beta chains in rabbits. J Mol Evol. 1987;25(4):292–299. doi: 10.1007/BF02603113. [DOI] [PubMed] [Google Scholar]
- Mariame B., Akimenko M. A., Rougeon F. Interallelic and intergenic conversion events could induce differential evolution of the two rabbit immunoglobulin kappa light chain genes. Nucleic Acids Res. 1987 Aug 11;15(15):6171–6179. doi: 10.1093/nar/15.15.6171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCartney-Francis N., Padlan E. A., Cohen G. H., Mage R. G. Localization of rabbit kappa light chain allotypic determinants. Mol Immunol. 1986 May;23(5):475–488. doi: 10.1016/0161-5890(86)90111-2. [DOI] [PubMed] [Google Scholar]
- Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
- Nei M., Jin L. Variances of the average numbers of nucleotide substitutions within and between populations. Mol Biol Evol. 1989 May;6(3):290–300. doi: 10.1093/oxfordjournals.molbev.a040547. [DOI] [PubMed] [Google Scholar]
- OUDIN J. Allotypy of rabbit serum proteins. I. Immuno-chemical analysis leading to the individualization of seven main allotypes. J Exp Med. 1960 Jul 1;112:107–124. doi: 10.1084/jem.112.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Padlan E. A. Quantitation of the immunogenic potential of protein antigens. Mol Immunol. 1985 Nov;22(11):1243–1254. doi: 10.1016/0161-5890(85)90043-4. [DOI] [PubMed] [Google Scholar]
- Padlan E. A. Structural implications of sequence variability in immunoglobulins. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2551–2555. doi: 10.1073/pnas.74.6.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potts W. K., Manning C. J., Wakeland E. K. Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature. 1991 Aug 15;352(6336):619–621. doi: 10.1038/352619a0. [DOI] [PubMed] [Google Scholar]
- Reisfeld R. A., Dray S., Nisonoff A. Differences in amino acid composition of rabbit gamma-G-immunoglobulin light polypeptide chains controlled by allelic genes. Immunochemistry. 1965 Jun;2(2):155–167. doi: 10.1016/0019-2791(65)90017-0. [DOI] [PubMed] [Google Scholar]
- Sheppard H. W., Gutman G. A. Allelic forms of rat kappa chain genes: evidence for strong selection at the level of nucleotide sequence. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7064–7068. doi: 10.1073/pnas.78.11.7064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephens J. C. Statistical methods of DNA sequence analysis: detection of intragenic recombination or gene conversion. Mol Biol Evol. 1985 Nov;2(6):539–556. doi: 10.1093/oxfordjournals.molbev.a040371. [DOI] [PubMed] [Google Scholar]
- Tajima F., Nei M. Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol. 1984 Apr;1(3):269–285. doi: 10.1093/oxfordjournals.molbev.a040317. [DOI] [PubMed] [Google Scholar]
- Takahata N. A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2419–2423. doi: 10.1073/pnas.87.7.2419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taniguchi T., Mizuochi T., Beale M., Dwek R. A., Rademacher T. W., Kobata A. Structures of the sugar chains of rabbit immunoglobulin G: occurrence of asparagine-linked sugar chains in Fab fragment. Biochemistry. 1985 Sep 24;24(20):5551–5557. doi: 10.1021/bi00341a040. [DOI] [PubMed] [Google Scholar]