Skip to main content
Genetics logoLink to Genetics
. 1992 Dec;132(4):911–927. doi: 10.1093/genetics/132.4.911

The Influence of Local DNA Sequence and DNA Repair Background on the Mutational Specificity of 1-Nitroso-8-Nitropyrene in Escherichia Coli: Inferences for Mutagenic Mechanisms

I B Lambert 1, AJE Gordon 1, B W Glickman 1, D R McCalla 1
PMCID: PMC1205248  PMID: 1459443

Abstract

We have examined the mutational specificity of 1-nitroso-8-nitropyrene (1,8-NONP), an activated metabolite of the carcinogen 1,8-dinitropyrene, in the lacI gene of Escherichia coli strains which differ with respect to nucleotide excision repair (+/-ΔuvrB) and MucA/B-mediated error-prone translesion synthesis (+/-pKM101). Several different classes of mutation were recovered, of which frameshifts, base substitutions, and deletions were clearly induced by 1,8-NONP treatment. The high proportion of point mutations (>92%) which occurred at G·C sites correlates with the percentage of 1,8-NONP-DNA adducts which occur at the C(8) position of guanine. The most prominent frameshift mutations were -(G·C) events, which were induced by 1,8-NONP treatment in all strains, occurred preferentially in runs of guanine residues, and whose frequency increased markedly with the length of the reiterated sequence. Of the base substitution mutations G·C -> T·A transversions were induced to the greatest extent by 1,8-NONP. The distribution of the G·C -> T·A transversions was not influenced by the nature of flanking bases, nor was there a strand preference for these events. The presence of plasmid pKM101 specifically increased the frequency of G·C -> T·A transversions by a factor of 30-60. In contrast, the -(G·C) frameshift mutation frequency was increased only 2-4-fold in strains harboring pKM101 as compared to strains lacking this plasmid. There was, however, a marked influence of pKM101 on the strand specificity of frameshift mutation; a preference was observed for -G events on the transcribed strand. The ability of the bacteria to carry out nucleotide excision repair had a strong effect on the frequency of all classes of mutation but did not significantly influence either the overall distribution of mutational classes or the strand specificity of G·C -> T·A transversions and -(G·C) frameshifts. Deletion mutations were induced in the Δuvr, pKM101 strain. The endpoints of the majority of the deletion mutations were G·C rich and contained regions of considerable homology. The specificity of 1,8-NONP-induced mutation suggests that DNA containing 1,8-NONP adducts can be processed through different mutational pathways depending on the DNA sequence context of the adduct and the DNA repair background of the cell.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. J., Quilliam M. A., McCarry B. E., Bryant D. W., McCalla D. R. Identification of the DNA adduct formed by metabolism of 1,8-dinitropyrene in Salmonella typhimurium. Carcinogenesis. 1986 Jan;7(1):105–110. doi: 10.1093/carcin/7.1.105. [DOI] [PubMed] [Google Scholar]
  2. Brown T., Hunter W. N., Kneale G., Kennard O. Molecular structure of the G.A base pair in DNA and its implications for the mechanism of transversion mutations. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2402–2406. doi: 10.1073/pnas.83.8.2402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coulondre C., Miller J. H. Genetic studies of the lac repressor. III. Additional correlation of mutational sites with specific amino acid residues. J Mol Biol. 1977 Dec 15;117(3):525–567. doi: 10.1016/0022-2836(77)90056-0. [DOI] [PubMed] [Google Scholar]
  4. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Evans F. E., Miller D. W., Beland F. A. Sensitivity of the conformation of deoxyguanosine to binding at the C-8 position by N-acetylated and unacetylated 2-aminofluorene. Carcinogenesis. 1980;1(11):955–959. doi: 10.1093/carcin/1.11.955. [DOI] [PubMed] [Google Scholar]
  6. Freund A. M., Bichara M., Fuchs R. P. Z-DNA-forming sequences are spontaneous deletion hot spots. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7465–7469. doi: 10.1073/pnas.86.19.7465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Glickman B. W., Ripley L. S. Structural intermediates of deletion mutagenesis: a role for palindromic DNA. Proc Natl Acad Sci U S A. 1984 Jan;81(2):512–516. doi: 10.1073/pnas.81.2.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gordon A. J., Burns P. A., Fix D. F., Yatagai F., Allen F. L., Horsfall M. J., Halliday J. A., Gray J., Bernelot-Moens C., Glickman B. W. Missense mutation in the lacI gene of Escherichia coli. Inferences on the structure of the repressor protein. J Mol Biol. 1988 Mar 20;200(2):239–251. doi: 10.1016/0022-2836(88)90237-9. [DOI] [PubMed] [Google Scholar]
  9. Halliday J. A., Glickman B. W. Mechanisms of spontaneous mutation in DNA repair-proficient Escherichia coli. Mutat Res. 1991 Sep-Oct;250(1-2):55–71. doi: 10.1016/0027-5107(91)90162-h. [DOI] [PubMed] [Google Scholar]
  10. Halliday J. A., Zielenska M., Awadallah S. S., Glickman B. W. Colony hybridisation in Escherichia coli: a rapid procedure for determining the distribution of specific classes of mutations among a number of preselected sites. Environ Mol Mutagen. 1990;16(3):143–148. doi: 10.1002/em.2850160303. [DOI] [PubMed] [Google Scholar]
  11. Kan L. S., Chandrasegaran S., Pulford S. M., Miller P. S. Detection of a guanine X adenine base pair in a decadeoxyribonucleotide by proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4263–4265. doi: 10.1073/pnas.80.14.4263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koffel-Schwartz N., Verdier J. M., Bichara M., Freund A. M., Daune M. P., Fuchs R. P. Carcinogen-induced mutation spectrum in wild-type, uvrA and umuC strains of Escherichia coli. Strain specificity and mutation-prone sequences. J Mol Biol. 1984 Jul 25;177(1):33–51. doi: 10.1016/0022-2836(84)90056-1. [DOI] [PubMed] [Google Scholar]
  13. Kunkel T. A., Soni A. Mutagenesis by transient misalignment. J Biol Chem. 1988 Oct 15;263(29):14784–14789. [PubMed] [Google Scholar]
  14. Lahue R. S., Au K. G., Modrich P. DNA mismatch correction in a defined system. Science. 1989 Jul 14;245(4914):160–164. doi: 10.1126/science.2665076. [DOI] [PubMed] [Google Scholar]
  15. Lambert I. B., Gordon A. J., Bryant D. W., Glickman B. W., McCalla D. R. The action of 1-nitroso-8-nitropyrene in Escherichia coli: DNA adduct formation and mutational consequences in the absence of nucleotide excision-repair. Carcinogenesis. 1991 May;12(5):879–884. doi: 10.1093/carcin/12.5.879. [DOI] [PubMed] [Google Scholar]
  16. Lambert I. B., Napolitano R. L., Fuchs R. P. Carcinogen-induced frameshift mutagenesis in repetitive sequences. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1310–1314. doi: 10.1073/pnas.89.4.1310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McCoy E. C., Holloway M., Frierson M., Klopman G., Mermelstein R., Rosenkranz H. S. Genetic and quantum chemical basis of the mutagenicity of nitroarenes for adenine-thymine base pairs. Mutat Res. 1985 May;149(3):311–319. doi: 10.1016/0027-5107(85)90146-0. [DOI] [PubMed] [Google Scholar]
  18. Michaels M. L., Reid T. M., King C. M., Romano L. J. Accurate in vitro translesion synthesis by Escherichia coli DNA polymerase I (large fragment) on a site-specific, aminofluorene-modified oligonucleotide. Carcinogenesis. 1991 Sep;12(9):1641–1646. doi: 10.1093/carcin/12.9.1641. [DOI] [PubMed] [Google Scholar]
  19. Miller J. H., Coulondre C., Farabaugh P. J. Correlation of nonsense sites in the lacI gene with specific codons in the nucleotide sequence. Nature. 1978 Aug 24;274(5673):770–775. doi: 10.1038/274770a0. [DOI] [PubMed] [Google Scholar]
  20. Norman C. A., Lambert I. B., Davison L. M., Bryant D. W., McCalla D. R. Formation and persistence of DNA adducts in rats following intraperitoneal administration of 1,8-dinitropyrene. Carcinogenesis. 1990 Jun;11(6):1037–1040. doi: 10.1093/carcin/11.6.1037. [DOI] [PubMed] [Google Scholar]
  21. Norman D., Abuaf P., Hingerty B. E., Live D., Grunberger D., Broyde S., Patel D. J. NMR and computational characterization of the N-(deoxyguanosin-8-yl)aminofluorene adduct [(AF)G] opposite adenosine in DNA: (AF)G[syn].A[anti] pair formation and its pH dependence. Biochemistry. 1989 Sep 5;28(18):7462–7476. doi: 10.1021/bi00444a046. [DOI] [PubMed] [Google Scholar]
  22. Quigley G. J., Ughetto G., van der Marel G. A., van Boom J. H., Wang A. H., Rich A. Non-Watson-Crick G.C and A.T base pairs in a DNA-antibiotic complex. Science. 1986 Jun 6;232(4755):1255–1258. doi: 10.1126/science.3704650. [DOI] [PubMed] [Google Scholar]
  23. Rabkin S. D., Strauss B. S. A role for DNA polymerase in the specificity of nucleotide incorporation opposite N-acetyl-2-aminofluorene adducts. J Mol Biol. 1984 Sep 25;178(3):569–594. doi: 10.1016/0022-2836(84)90239-0. [DOI] [PubMed] [Google Scholar]
  24. Refolo L. M., Bennett C. B., Humayun M. Z. Mechanisms of frameshift mutagenesis by aflatoxin B1-2,3-dichloride. J Mol Biol. 1987 Feb 20;193(4):609–636. doi: 10.1016/0022-2836(87)90344-5. [DOI] [PubMed] [Google Scholar]
  25. Ripley L. S., Clark A., deBoer J. G. Spectrum of spontaneous frameshift mutations. Sequences of bacteriophage T4 rII gene frameshifts. J Mol Biol. 1986 Oct 20;191(4):601–613. doi: 10.1016/0022-2836(86)90448-1. [DOI] [PubMed] [Google Scholar]
  26. Rosenkranz H. S., Mermelstein R. Mutagenicity and genotoxicity of nitroarenes. All nitro-containing chemicals were not created equal. Mutat Res. 1983 Apr;114(3):217–267. doi: 10.1016/0165-1110(83)90034-9. [DOI] [PubMed] [Google Scholar]
  27. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  28. Schaaper R. M., Danforth B. N., Glickman B. W. Mechanisms of spontaneous mutagenesis: an analysis of the spectrum of spontaneous mutation in the Escherichia coli lacI gene. J Mol Biol. 1986 May 20;189(2):273–284. doi: 10.1016/0022-2836(86)90509-7. [DOI] [PubMed] [Google Scholar]
  29. Schaaper R. M., Danforth B. N., Glickman B. W. Rapid repeated cloning of mutant lac repressor genes. Gene. 1985;39(2-3):181–189. doi: 10.1016/0378-1119(85)90312-9. [DOI] [PubMed] [Google Scholar]
  30. Schaaper R. M., Koffel-Schwartz N., Fuchs R. P. N-acetoxy-N-acetyl-2-aminofluorene-induced mutagenesis in the lacI gene of Escherichia coli. Carcinogenesis. 1990 Jul;11(7):1087–1095. doi: 10.1093/carcin/11.7.1087. [DOI] [PubMed] [Google Scholar]
  31. Schmeissner U., Ganem D., Miller J. H. Genetic studies of the lac repressor. II. Fine structure deletion map of the lacI gene, and its correlation with the physical map. J Mol Biol. 1977 Jan 15;109(2):303–326. doi: 10.1016/s0022-2836(77)80036-3. [DOI] [PubMed] [Google Scholar]
  32. Selby C. P., Witkin E. M., Sancar A. Escherichia coli mfd mutant deficient in "mutation frequency decline" lacks strand-specific repair: in vitro complementation with purified coupling factor. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11574–11578. doi: 10.1073/pnas.88.24.11574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shiba T., Iwasaki H., Nakata A., Shinagawa H. Proteolytic processing of MucA protein in SOS mutagenesis: both processed and unprocessed MucA may be active in the mutagenesis. Mol Gen Genet. 1990 Nov;224(2):169–176. doi: 10.1007/BF00271549. [DOI] [PubMed] [Google Scholar]
  34. Singer B. S., Westlye J. Deletion formation in bacteriophage T4. J Mol Biol. 1988 Jul 20;202(2):233–243. doi: 10.1016/0022-2836(88)90454-8. [DOI] [PubMed] [Google Scholar]
  35. Sowers L. C., Shaw B. R., Veigl M. L., Sedwick W. D. DNA base modification: ionized base pairs and mutagenesis. Mutat Res. 1987 Apr;177(2):201–218. doi: 10.1016/0027-5107(87)90003-0. [DOI] [PubMed] [Google Scholar]
  36. Streisinger G., Owen J. Mechanisms of spontaneous and induced frameshift mutation in bacteriophage T4. Genetics. 1985 Apr;109(4):633–659. doi: 10.1093/genetics/109.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Terleth C., van de Putte P., Brouwer J. New insights in DNA repair: preferential repair of transcriptionally active DNA. Mutagenesis. 1991 Mar;6(2):103–111. doi: 10.1093/mutage/6.2.103. [DOI] [PubMed] [Google Scholar]
  38. Tokiwa H., Ohnishi Y. Mutagenicity and carcinogenicity of nitroarenes and their sources in the environment. Crit Rev Toxicol. 1986;17(1):23–60. doi: 10.3109/10408448609037070. [DOI] [PubMed] [Google Scholar]
  39. Walker G. C. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev. 1984 Mar;48(1):60–93. doi: 10.1128/mr.48.1.60-93.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zuker M., Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981 Jan 10;9(1):133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES