Skip to main content
Genetics logoLink to Genetics
. 1993 Jan;133(1):87–96. doi: 10.1093/genetics/133.1.87

Characterization of the Mus308 Gene in Drosophila Melanogaster

E A Leonhardt 1, D S Henderson 1, J E Rinehart 1, J B Boyd 1
PMCID: PMC1205301  PMID: 8417992

Abstract

Among the available mutagen-sensitive mutations in Drosophila, those at the mus308 locus are unique in conferring hypersensitivity to DNA cross-linking agents but not to monofunctional agents. Those mutations are also associated with an elevated frequency of chromosomal aberrations, altered DNA metabolism and the modification of a deoxyribonuclease. This spectrum of phenotypes is shared with selected mammalian mutations including Fanconi anemia in humans. In anticipation of the molecular characterization of the mus308 gene, it has been localized cytogenetically to 87C9-87D1,2 on the right arm of chromosome three. Nine new mutant alleles of the gene have been generated by X-ray mutagenesis and one was recovered following hybrid dysgenesis. Characterization of these new alleles has uncovered additional phenotypes of mutations at this locus. Homozygous mus308 flies that have survived moderate mutagen treatment exhibit an altered wing position that is correlated with reduced flight ability and an altered mitochondrial morphology. In addition, observations of elevated embryo mortality are potentially explained by an aberrant distribution of nuclear material in early embryos which is similar to that seen in the mutant giant nuclei.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyd J. B., Golino M. D., Setlow R. B. The mei-9 alpha mutant of Drosophila melanogaster increases mutagen sensitivity and decreases excision repair. Genetics. 1976 Nov;84(3):527–544. doi: 10.1093/genetics/84.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyd J. B., Golino M. D., Shaw K. E., Osgood C. J., Green M. M. Third-chromosome mutagen-sensitive mutants of Drosophila melanogaster. Genetics. 1981 Mar-Apr;97(3-4):607–623. doi: 10.1093/genetics/97.3-4.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyd J. B., Harris P. V. Isolation and characterization of a photorepair-deficient mutant in Drosophila melanogaster. Genetics. 1987 Jun;116(2):233–239. doi: 10.1093/genetics/116.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyd J. B., Harris P. V., Osgood C. J., Smith K. E. Biochemical characterization of repair-deficient mutants of Drosophila. Basic Life Sci. 1980;15:209–221. doi: 10.1007/978-1-4684-3842-0_14. [DOI] [PubMed] [Google Scholar]
  5. Boyd J. B., Sakaguchi K., Harris P. V. mus308 mutants of Drosophila exhibit hypersensitivity to DNA cross-linking agents and are defective in a deoxyribonuclease. Genetics. 1990 Aug;125(4):813–819. doi: 10.1093/genetics/125.4.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyd J. B., Setlow R. B. Characterization of postreplication repair in mutagen-sensitive strains of Drosophila melanogaster. Genetics. 1976 Nov;84(3):507–526. doi: 10.1093/genetics/84.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown T. C., Boyd J. B. Abnormal recovery of DNA replication in ultraviolet-irradiated cell cultures of Drosophila melanogaster which are defective in DNA repair. Mol Gen Genet. 1981;183(2):363–368. doi: 10.1007/BF00270641. [DOI] [PubMed] [Google Scholar]
  8. Buck V., White A., Rosamond J. CDC7 protein kinase activity is required for mitosis and meiosis in Saccharomyces cerevisiae. Mol Gen Genet. 1991 Jul;227(3):452–457. doi: 10.1007/BF00273937. [DOI] [PubMed] [Google Scholar]
  9. Fleming R. J., DeSimone S. M., White K. Molecular isolation and analysis of the erect wing locus in Drosophila melanogaster. Mol Cell Biol. 1989 Feb;9(2):719–725. doi: 10.1128/mcb.9.2.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Freeman M., Glover D. M. The gnu mutation of Drosophila causes inappropriate DNA synthesis in unfertilized and fertilized eggs. Genes Dev. 1987 Nov;1(9):924–930. doi: 10.1101/gad.1.9.924. [DOI] [PubMed] [Google Scholar]
  11. Hall J. C., Kankel D. R. Genetics of acetylcholinesterase in Drosophila melanogaster. Genetics. 1976 Jul;83(3 PT2):517–535. [PMC free article] [PubMed] [Google Scholar]
  12. Hoekstra M. F., Liskay R. M., Ou A. C., DeMaggio A. J., Burbee D. G., Heffron F. HRR25, a putative protein kinase from budding yeast: association with repair of damaged DNA. Science. 1991 Aug 30;253(5023):1031–1034. doi: 10.1126/science.1887218. [DOI] [PubMed] [Google Scholar]
  13. Homyk T., Jr, Emerson C. P., Jr Functional interactions between unlinked muscle genes within haploinsufficient regions of the Drosophila genome. Genetics. 1988 May;119(1):105–121. doi: 10.1093/genetics/119.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ishida R., Buchwald M. Susceptibility of Fanconi's anemia lymphoblasts to DNA-cross-linking and alkylating agents. Cancer Res. 1982 Oct;42(10):4000–4006. [PubMed] [Google Scholar]
  15. Karlik C. C., Coutu M. D., Fyrberg E. A. A nonsense mutation within the act88F actin gene disrupts myofibril formation in Drosophila indirect flight muscles. Cell. 1984 Oct;38(3):711–719. doi: 10.1016/0092-8674(84)90266-6. [DOI] [PubMed] [Google Scholar]
  16. Mahaffey J. W., Coutu M. D., Fyrberg E. A., Inwood W. The flightless Drosophila mutant raised has two distinct genetic lesions affecting accumulation of myofibrillar proteins in flight muscles. Cell. 1985 Jan;40(1):101–110. doi: 10.1016/0092-8674(85)90313-7. [DOI] [PubMed] [Google Scholar]
  17. Njagi G. D., Kilbey B. J. cdc7-1 a temperature sensitive cell-cycle mutant which interferes with induced mutagenesis in Saccharomyces cerevisiae. Mol Gen Genet. 1982;186(4):478–481. doi: 10.1007/BF00337951. [DOI] [PubMed] [Google Scholar]
  18. Pincheira J., Bravo M., López-Sáez J. F. Fanconi's anemia lymphocytes: effect of caffeine, adenosine and niacinamide during G2 prophase. Mutat Res. 1988 May;199(1):159–165. doi: 10.1016/0027-5107(88)90241-2. [DOI] [PubMed] [Google Scholar]
  19. Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rosendorff J., Bernstein R. Fanconi's anemia--chromosome breakage studies in homozygotes and heterozygotes. Cancer Genet Cytogenet. 1988 Jul 15;33(2):175–183. doi: 10.1016/0165-4608(88)90027-1. [DOI] [PubMed] [Google Scholar]
  21. Sakaguchi K., Harris P. V., van Kuyk R., Singson A., Boyd J. B. A mitochondrial nuclease is modified in Drosophila mutants (mus308) that are hypersensitive to DNA crosslinking agents. Mol Gen Genet. 1990 Dec;224(3):333–340. doi: 10.1007/BF00262426. [DOI] [PubMed] [Google Scholar]
  22. Smith D. A., Baker B. S., Gatti M. Mutations in genes encoding essential mitotic functions in Drosophila melanogaster. Genetics. 1985 Aug;110(4):647–670. doi: 10.1093/genetics/110.4.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Timme T. L., Moses R. E. Diseases with DNA damage-processing defects. Am J Med Sci. 1988 Jan;295(1):40–48. doi: 10.1097/00000441-198801000-00009. [DOI] [PubMed] [Google Scholar]
  24. Voelker R. A., Ohnishi S., Langley C. H., Gausz J., Gyurkovics H. Genetic and cytogenetic studies of malic enzyme in Drosophila melanogaster. Biochem Genet. 1981 Jun;19(5-6):525–534. doi: 10.1007/BF00484624. [DOI] [PubMed] [Google Scholar]
  25. Zahner J. E., Cheney C. M. Quartet: a Drosophila developmental mutation affecting chromosome separation in mitosis. Dev Genet. 1990;11(1):27–40. doi: 10.1002/dvg.1020110105. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES