Skip to main content
Genetics logoLink to Genetics
. 1993 Feb;133(2):213–224. doi: 10.1093/genetics/133.2.213

A Genetic System Controlling Mitochondrial Fusion in the Slime Mould, Physarum Polycephalum

S Kawano 1, H Takano 1, J Imai 1, K Mori 1, T Kuroiwa 1
PMCID: PMC1205312  PMID: 8436271

Abstract

We have identified two distinct mitochondrial phenotypes, namely, Mif(+) (mitochondrial fusion) and Mif(-) (mitochondrial fusion-deficient), and have studied the genetic system that controls mitochondrial fusion in the slime mould, Physarum polycephalum. A mitochondrial plasmid of approximately 16 kbp was identified in all Mif(+) plasmodial strains. This plasmid is apparently responsible for promoting mitochondrial fusion, and it is inserted into the mitochondrial DNA (mtDNA) in successive sexual crossing with Mif(-) strains. This recombinant mtDNA and the unchanged free plasmid spread through the mitochondrial population via the promotion of mitochondrial fusion. The Mif(+) strains with the plasmid were further classified as being two types: high frequency and low frequency mitochondrial fusion. Restriction analysis of the mtDNA suggested that the high frequency mitochondrial fusion type was more often heteroplasmic; within each plasmodium, mtDNAs of both parental types were usually present, in addition to the presence of the plasmid. Genetic analysis with the progeny obtained from crossing myxamoebae derived from three different isolates suggested that these progeny carried different alleles at a nuclear locus that controlled the frequency of mitochondrial fusion. These alleles (mitochondrial mating-type alleles, mitA1, 2 and 3) appear to function like the mating type of the myxamoebae; mitochondrial fusion occurs at high frequency with the combination of unlike alleles, but at low frequency with the combination of like alleles.

Full Text

The Full Text of this article is available as a PDF (4.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birky C. W., Jr Transmission genetics of mitochondria and chloroplasts. Annu Rev Genet. 1978;12:471–512. doi: 10.1146/annurev.ge.12.120178.002351. [DOI] [PubMed] [Google Scholar]
  2. Boynton J. E., Harris E. H., Burkhart B. D., Lamerson P. M., Gillham N. W. Transmission of mitochondrial and chloroplast genomes in crosses of Chlamydomonas. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2391–2395. doi: 10.1073/pnas.84.8.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clewell D. B., Gawron-Burke C. Conjugative transposons and the dissemination of antibiotic resistance in streptococci. Annu Rev Microbiol. 1986;40:635–659. doi: 10.1146/annurev.mi.40.100186.003223. [DOI] [PubMed] [Google Scholar]
  4. Collins R. A., Saville B. J. Independent transfer of mitochondrial chromosomes and plasmids during unstable vegetative fusion in Neurospora. Nature. 1990 May 10;345(6271):177–179. doi: 10.1038/345177a0. [DOI] [PubMed] [Google Scholar]
  5. Gauthier A., Turmel M., Lemieux C. A group I intron in the chloroplast large subunit rRNA gene of Chlamydomonas eugametos encodes a double-strand endonuclease that cleaves the homing site of this intron. Curr Genet. 1991 Jan;19(1):43–47. doi: 10.1007/BF00362086. [DOI] [PubMed] [Google Scholar]
  6. Heinemann J. A. Genetics of gene transfer between species. Trends Genet. 1991 Jun;7(6):181–185. doi: 10.1016/0168-9525(91)90433-q. [DOI] [PubMed] [Google Scholar]
  7. Hoffmann H. P., Avers C. J. Mitochondrion of yeast: ultrastructural evidence for one giant, branched organelle per cell. Science. 1973 Aug 24;181(4101):749–751. doi: 10.1126/science.181.4101.749. [DOI] [PubMed] [Google Scholar]
  8. Ippen-Ihler K. A., Minkley E. G., Jr The conjugation system of F, the fertility factor of Escherichia coli. Annu Rev Genet. 1986;20:593–624. doi: 10.1146/annurev.ge.20.120186.003113. [DOI] [PubMed] [Google Scholar]
  9. Kawano S., Anderson R. W., Nanba T., Kuroiwa T. Polymorphism and uniparental inheritance of mitochondrial DNA in Physarum polycephalum. J Gen Microbiol. 1987 Nov;133(11):3175–3182. doi: 10.1099/00221287-133-11-3175. [DOI] [PubMed] [Google Scholar]
  10. Marshall P., Lemieux C. Cleavage pattern of the homing endonuclease encoded by the fifth intron in the chloroplast large subunit rRNA-encoding gene of Chlamydomonas eugametos. Gene. 1991 Aug 15;104(2):241–245. doi: 10.1016/0378-1119(91)90256-b. [DOI] [PubMed] [Google Scholar]
  11. May G., Taylor J. W. Independent transfer of mitochondrial plasmids in Neurospora crassa. Nature. 1989 May 25;339(6222):320–322. doi: 10.1038/339320a0. [DOI] [PubMed] [Google Scholar]
  12. Miyakawa I., Aoi H., Sando N., Kuroiwa T. Fluorescence microscopic studies of mitochondrial nucleoids during meiosis and sporulation in the yeast, Saccharomyces cerevisiae. J Cell Sci. 1984 Mar;66:21–38. doi: 10.1242/jcs.66.1.21. [DOI] [PubMed] [Google Scholar]
  13. Nargang F. E., Bell J. B., Stohl L. L., Lambowitz A. M. The DNA sequence and genetic organization of a Neurospora mitochondrial plasmid suggest a relationship to introns and mobile elements. Cell. 1984 Sep;38(2):441–453. doi: 10.1016/0092-8674(84)90499-9. [DOI] [PubMed] [Google Scholar]
  14. Remacle C., Bovie C., Michel-Wolwertz M. R., Loppes R., Matagne R. F. Mitochondrial genome transmission in Chlamydomonas diploids obtained by sexual crosses and artificial fusions: role of the mating type and of a 1 kb intron. Mol Gen Genet. 1990 Sep;223(2):180–184. doi: 10.1007/BF00265051. [DOI] [PubMed] [Google Scholar]
  15. Silliker M. E., Collins O. R. Non-mendelian inheritance of mitochondrial DNA and ribosomal DNA in the myxomycete, Didymium iridis. Mol Gen Genet. 1988 Aug;213(2-3):370–378. doi: 10.1007/BF00339605. [DOI] [PubMed] [Google Scholar]
  16. Takano H., Kawano S., Kuroiwa T. Constitutive homologous recombination between mitochondrial DNA and a linear mitochondrial plasmid in Physarum polycephalum. Curr Genet. 1992 Sep;22(3):221–227. doi: 10.1007/BF00351729. [DOI] [PubMed] [Google Scholar]
  17. Zinn A. R., Butow R. A. Nonreciprocal exchange between alleles of the yeast mitochondrial 21S rRNA gene: kinetics and the involvement of a double-strand break. Cell. 1985 Apr;40(4):887–895. doi: 10.1016/0092-8674(85)90348-4. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES