Skip to main content
Genetics logoLink to Genetics
. 1993 Feb;133(2):253–263. doi: 10.1093/genetics/133.2.253

Structure and Expression of Hybrid Dysgenesis-Induced Alleles of the Ovarian Tumor (Otu) Gene in Drosophila Melanogaster

G L Sass 1, J D Mohler 1, R C Walsh 1, L J Kalfayan 1, L L Searles 1
PMCID: PMC1205316  PMID: 8436274

Abstract

Mutations at the ovarian tumor (otu) gene of Drosophila melanogaster cause female sterility and generate a range of ovarian phenotypes. Quiescent (QUI) mutants exhibit reduced germ cell proliferation; in oncogenic (ONC) mutants germ cells undergo uncontrolled proliferation generating excessive numbers of undifferentiated cells; the egg chambers of differentiated (DIF) mutants differentiate to variable degrees but fail to complete oogenesis. We have examined mutations caused by insertion and deletion of P elements at the otu gene. The P element insertion sites are upstream of the major otu transcription start sites. In deletion derivatives, the P element, regulatory regions and/or protein coding sequences have been removed. In both insertion and deletion mutants, the level of otu expression correlates directly with the severity of the phenotype: the absence of otu function produces the most severe QUI phenotype while the ONC mutants express lower levels of otu than those which are DIF. The results of this study demonstrate that the diverse mutant phenotypes of otu are the consequence of different levels of otu function.

Full Text

The Full Text of this article is available as a PDF (6.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Comer A. R., Searles L. L., Kalfayan L. J. Identification of a genomic DNA fragment containing the Drosophila melanogaster ovarian tumor gene (otu) and localization of regions governing its expression. Gene. 1992 Sep 10;118(2):171–179. doi: 10.1016/0378-1119(92)90186-s. [DOI] [PubMed] [Google Scholar]
  2. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  3. Geyer P. K., Richardson K. L., Corces V. G., Green M. M. Genetic instability in Drosophila melanogaster: P-element mutagenesis by gene conversion. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6455–6459. doi: 10.1073/pnas.85.17.6455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. King R. C., Mohler D., Riley S. F., Storto P. D., Nicolazzo P. S. Complementation between alleles at the ovarian tumor locus of Drosophila melanogaster. Dev Genet. 1986;7(1):1–20. doi: 10.1002/dvg.1020070102. [DOI] [PubMed] [Google Scholar]
  5. King R. C., Storto P. D. The role of the otu gene in Drosophila oogenesis. Bioessays. 1988 Jan;8(1):18–24. doi: 10.1002/bies.950080106. [DOI] [PubMed] [Google Scholar]
  6. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mulligan P. K., Mohler J. D., Kalfayan L. J. Molecular localization and developmental expression of the otu locus of Drosophila melanogaster. Mol Cell Biol. 1988 Apr;8(4):1481–1488. doi: 10.1128/mcb.8.4.1481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. O'Connell P. O., Rosbash M. Sequence, structure, and codon preference of the Drosophila ribosomal protein 49 gene. Nucleic Acids Res. 1984 Jul 11;12(13):5495–5513. doi: 10.1093/nar/12.13.5495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. O'Hare K., Rubin G. M. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell. 1983 Aug;34(1):25–35. doi: 10.1016/0092-8674(83)90133-2. [DOI] [PubMed] [Google Scholar]
  10. Oliver B., Perrimon N., Mahowald A. P. The ovo locus is required for sex-specific germ line maintenance in Drosophila. Genes Dev. 1987 Nov;1(9):913–923. doi: 10.1101/gad.1.9.913. [DOI] [PubMed] [Google Scholar]
  11. Pauli D., Mahowald A. P. Germ-line sex determination in Drosophila melanogaster. Trends Genet. 1990 Aug;6(8):259–264. doi: 10.1016/0168-9525(90)90208-n. [DOI] [PubMed] [Google Scholar]
  12. Perkins K. K., Dailey G. M., Tjian R. In vitro analysis of the Antennapedia P2 promoter: identification of a new Drosophila transcription factor. Genes Dev. 1988 Dec;2(12A):1615–1626. doi: 10.1101/gad.2.12a.1615. [DOI] [PubMed] [Google Scholar]
  13. Ptashne M. Gene regulation by proteins acting nearby and at a distance. Nature. 1986 Aug 21;322(6081):697–701. doi: 10.1038/322697a0. [DOI] [PubMed] [Google Scholar]
  14. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
  15. Salz H. K. The genetic analysis of snf: a Drosophila sex determination gene required for activation of Sex-lethal in both the germline and the soma. Genetics. 1992 Mar;130(3):547–554. doi: 10.1093/genetics/130.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Steinhauer W. R., Kalfayan L. J. A specific ovarian tumor protein isoform is required for efficient differentiation of germ cells in Drosophila oogenesis. Genes Dev. 1992 Feb;6(2):233–243. doi: 10.1101/gad.6.2.233. [DOI] [PubMed] [Google Scholar]
  17. Steinhauer W. R., Walsh R. C., Kalfayan L. J. Sequence and structure of the Drosophila melanogaster ovarian tumor gene and generation of an antibody specific for the ovarian tumor protein. Mol Cell Biol. 1989 Dec;9(12):5726–5732. doi: 10.1128/mcb.9.12.5726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Steinmann-Zwicky M., Schmid H., Nöthiger R. Cell-autonomous and inductive signals can determine the sex of the germ line of drosophila by regulating the gene Sxl. Cell. 1989 Apr 7;57(1):157–166. doi: 10.1016/0092-8674(89)90181-5. [DOI] [PubMed] [Google Scholar]
  19. Storto P. D., King R. C. Multiplicity of functions for the otu gene products during Drosophila oogenesis. Dev Genet. 1988;9(2):91–120. doi: 10.1002/dvg.1020090203. [DOI] [PubMed] [Google Scholar]
  20. Wakimoto B. T., Kalfayan L. J., Spradling A. C. Developmentally regulated expression of Drosophila chorion genes introduced at diverse chromosomal positions. J Mol Biol. 1986 Jan 5;187(1):33–45. doi: 10.1016/0022-2836(86)90404-3. [DOI] [PubMed] [Google Scholar]
  21. Williams J. A., Pappu S. S., Bell J. B. Molecular analysis of hybrid dysgenesis-induced derivatives of a P-element allele at the vg locus. Mol Cell Biol. 1988 Apr;8(4):1489–1497. doi: 10.1128/mcb.8.4.1489. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES