Skip to main content
Genetics logoLink to Genetics
. 1993 Feb;133(2):375–387. doi: 10.1093/genetics/133.2.375

DNA Sequence Variation at the Period Locus within and among Species of the Drosophila Melanogaster Complex

R M Kliman 1, J Hey 1
PMCID: PMC1205326  PMID: 8436278

Abstract

A 1.9-kilobase region of the period locus was sequenced in six individuals of Drosophila melanogaster and from six individuals of each of three sibling species: Drosophila simulans, Drosophila sechellia and Drosophila mauritiana. Extensive genealogical analysis of 174 polymorphic sites reveals a complex history. It appears that D. simulans, as a large population still segregating very old lineages, gave rise to the island species D. mauritiana and D. sechellia. Rather than considering these speciation events as having produced ``sister'' taxa, it seems more appropriate to consider D. simulans a parent species to D. sechellia and D. mauritiana. The order, in time, of these two phylogenetic events remains unclear. D. mauritiana supports a large number of polymorphisms, many of which are shared with D. simulans, and so appears to have begun and persisted as a large population. In contrast, D. sechellia has very little variation and seems to have experienced a severe population bottleneck. Alternatively, the low variation in D. sechellia could be due to recent directional selection and genetic hitchhiking at or near the per locus.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aquadro C. F., Desse S. F., Bland M. M., Langley C. H., Laurie-Ahlberg C. C. Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster. Genetics. 1986 Dec;114(4):1165–1190. doi: 10.1093/genetics/114.4.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aquadro C. F., Lado K. M., Noon W. A. The rosy region of Drosophila melanogaster and Drosophila simulans. I. Contrasting levels of naturally occurring DNA restriction map variation and divergence. Genetics. 1988 Aug;119(4):875–888. doi: 10.1093/genetics/119.4.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bodmer M., Ashburner M. Conservation and change in the DNA sequences coding for alcohol dehydrogenase in sibling species of Drosophila. 1984 May 31-Jun 6Nature. 309(5967):425–430. doi: 10.1038/309425a0. [DOI] [PubMed] [Google Scholar]
  4. Caccone A., Amato G. D., Powell J. R. Rates and patterns of scnDNA and mtDNA divergence within the Drosophila melanogaster subgroup. Genetics. 1988 Apr;118(4):671–683. doi: 10.1093/genetics/118.4.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cariou M. L., Solignac M., Monnerot M., David J. R. Low allozyme and mtDNA variability in the island endemic species Drosophila sechellia (D. melanogaster complex). Experientia. 1990 Jan 15;46(1):101–104. doi: 10.1007/BF01955430. [DOI] [PubMed] [Google Scholar]
  6. Citri Y., Colot H. V., Jacquier A. C., Yu Q., Hall J. C., Baltimore D., Rosbash M. A family of unusually spliced biologically active transcripts encoded by a Drosophila clock gene. Nature. 1987 Mar 5;326(6108):42–47. doi: 10.1038/326042a0. [DOI] [PubMed] [Google Scholar]
  7. Cohn V. H., Thompson M. A., Moore G. P. Nucleotide sequence comparison of the Adh gene in three drosophilids. J Mol Evol. 1984;20(1):31–37. doi: 10.1007/BF02101983. [DOI] [PubMed] [Google Scholar]
  8. Eanes W. F., Ajioka J. W., Hey J., Wesley C. Restriction-map variation associated with the G6PD polymorphism in natural populations of Drosophila melanogaster. Mol Biol Evol. 1989 Jul;6(4):384–397. doi: 10.1093/oxfordjournals.molbev.a040555. [DOI] [PubMed] [Google Scholar]
  9. Eanes W. F., Labate J., Ajioka J. W. Restriction-map variation with the yellow-achaete-scute region in five populations of Drosophila melanogaster. Mol Biol Evol. 1989 Sep;6(5):492–502. doi: 10.1093/oxfordjournals.molbev.a040565. [DOI] [PubMed] [Google Scholar]
  10. Hey J. The structure of genealogies and the distribution of fixed differences between DNA sequence samples from natural populations. Genetics. 1991 Aug;128(4):831–840. doi: 10.1093/genetics/128.4.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Higuchi R. G., Ochman H. Production of single-stranded DNA templates by exonuclease digestion following the polymerase chain reaction. Nucleic Acids Res. 1989 Jul 25;17(14):5865–5865. doi: 10.1093/nar/17.14.5865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hudson R. R., Kaplan N. L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics. 1985 Sep;111(1):147–164. doi: 10.1093/genetics/111.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hudson R. R., Kreitman M., Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987 May;116(1):153–159. doi: 10.1093/genetics/116.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hudson R. R. Properties of a neutral allele model with intragenic recombination. Theor Popul Biol. 1983 Apr;23(2):183–201. doi: 10.1016/0040-5809(83)90013-8. [DOI] [PubMed] [Google Scholar]
  15. Kaplan N. L., Hudson R. R., Langley C. H. The "hitchhiking effect" revisited. Genetics. 1989 Dec;123(4):887–899. doi: 10.1093/genetics/123.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kimura M. Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci U S A. 1981 Jan;78(1):454–458. doi: 10.1073/pnas.78.1.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kimura M. The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics. 1969 Apr;61(4):893–903. doi: 10.1093/genetics/61.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kreitman M., Hudson R. R. Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics. 1991 Mar;127(3):565–582. doi: 10.1093/genetics/127.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  20. McGinnis W., Shermoen A. W., Beckendorf S. K. A transposable element inserted just 5' to a Drosophila glue protein gene alters gene expression and chromatin structure. Cell. 1983 Aug;34(1):75–84. doi: 10.1016/0092-8674(83)90137-x. [DOI] [PubMed] [Google Scholar]
  21. Miyashita N., Langley C. H. Molecular and phenotypic variation of the white locus region in Drosophila melanogaster. Genetics. 1988 Sep;120(1):199–212. doi: 10.1093/genetics/120.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. R'Kha S., Capy P., David J. R. Host-plant specialization in the Drosophila melanogaster species complex: a physiological, behavioral, and genetical analysis. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1835–1839. doi: 10.1073/pnas.88.5.1835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schaeffer S. W., Aquadro C. F., Langley C. H. Restriction-map variation in the Notch region of Drosophila melanogaster. Mol Biol Evol. 1988 Jan;5(1):30–40. doi: 10.1093/oxfordjournals.molbev.a040475. [DOI] [PubMed] [Google Scholar]
  25. Sheen J. Y., Seed B. Electrolyte gradient gels for DNA sequencing. Biotechniques. 1988 Nov-Dec;6(10):942–944. [PubMed] [Google Scholar]
  26. Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
  27. Strobeck C. Expected linkage disequilibrium for a neutral locus linked to a chromosomal arrangement. Genetics. 1983 Mar;103(3):545–555. doi: 10.1093/genetics/103.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Templeton A. R. The theory of speciation via the founder principle. Genetics. 1980 Apr;94(4):1011–1038. doi: 10.1093/genetics/94.4.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thackeray J. R., Kyriacou C. P. Molecular evolution in the Drosophila yakuba period locus. J Mol Evol. 1990 Nov;31(5):389–401. doi: 10.1007/BF02106054. [DOI] [PubMed] [Google Scholar]
  30. Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]
  31. Wheeler D. A., Kyriacou C. P., Greenacre M. L., Yu Q., Rutila J. E., Rosbash M., Hall J. C. Molecular transfer of a species-specific behavior from Drosophila simulans to Drosophila melanogaster. Science. 1991 Mar 1;251(4997):1082–1085. doi: 10.1126/science.1900131. [DOI] [PubMed] [Google Scholar]
  32. Wu C. I., Li W. H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. doi: 10.1073/pnas.82.6.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yoshida K., Negishi T., Kobayashi N., Saito T., Owada F., Ajima J., Satake I., Tari K. [Effects of long-term administration of Tegafur on patients with relapsing advanced carcinoma (stage D) of the prostate]. Hinyokika Kiyo. 1983 Jan;29(1):105–111. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES