Skip to main content
Genetics logoLink to Genetics
. 1993 Mar;133(3):581–592. doi: 10.1093/genetics/133.3.581

Isolation of Mutations Affecting Neural Circuitry Required for Grooming Behavior in Drosophila Melanogaster

R W Phillis 1, A T Bramlage 1, C Wotus 1, A Whittaker 1, L S Gramates 1, D Seppala 1, F Farahanchi 1, P Caruccio 1, R K Murphey 1
PMCID: PMC1205345  PMID: 8454205

Abstract

We have developed a screen for the isolation of mutations that produce neural defects in adult Drosophila melanogaster. In this screen, we identify mutants as flies unable to remove a light coating of applied dust in a 2-hr period. We have recovered and characterized six mutations and have found that they produce coordination defects and some have reduced levels of reflex responsiveness to the stimulation of single tactile sensory bristles. The grooming defects produced by all six of the mutations are recessive, and each of the mutations has been genetically mapped. We have also used our assay to test the grooming ability of stocks containing mutations that produce known neural defects.

Full Text

The Full Text of this article is available as a PDF (6.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentley D. Single gene cricket mutations: effects on behavior, sensilla, sensory neurons, and identified interneurons. Science. 1975 Feb 28;187(4178):760–764. doi: 10.1126/science.1114323. [DOI] [PubMed] [Google Scholar]
  2. Bier E., Vaessin H., Shepherd S., Lee K., McCall K., Barbel S., Ackerman L., Carretto R., Uemura T., Grell E. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 1989 Sep;3(9):1273–1287. doi: 10.1101/gad.3.9.1273. [DOI] [PubMed] [Google Scholar]
  3. Corfas G., Dudai Y. Habituation and dishabituation of a cleaning reflex in normal and mutant Drosophila. J Neurosci. 1989 Jan;9(1):56–62. doi: 10.1523/JNEUROSCI.09-01-00056.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Elkins T., Zinn K., McAllister L., Hoffmann F. M., Goodman C. S. Genetic analysis of a Drosophila neural cell adhesion molecule: interaction of fasciclin I and Abelson tyrosine kinase mutations. Cell. 1990 Feb 23;60(4):565–575. doi: 10.1016/0092-8674(90)90660-7. [DOI] [PubMed] [Google Scholar]
  5. Harris W. A., Stark W. S., Walker J. A. Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J Physiol. 1976 Apr;256(2):415–439. doi: 10.1113/jphysiol.1976.sp011331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Homyk T., Jr, Szidonya J., Suzuki D. T. Behavioral mutants of Drosophila melanogaster. III. Isolation and mapping of mutations by direct visual observations of behavioral phenotypes. Mol Gen Genet. 1980;177(4):553–565. doi: 10.1007/BF00272663. [DOI] [PubMed] [Google Scholar]
  7. Kauvar L. M. Defective cyclic adenosine 3':5'-monophosphate phosphodiesterase in the Drosophila memory mutant dunce. J Neurosci. 1982 Oct;2(10):1347–1358. doi: 10.1523/JNEUROSCI.02-10-01347.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Levin L. R., Han P. L., Hwang P. M., Feinstein P. G., Davis R. L., Reed R. R. The Drosophila learning and memory gene rutabaga encodes a Ca2+/Calmodulin-responsive adenylyl cyclase. Cell. 1992 Feb 7;68(3):479–489. doi: 10.1016/0092-8674(92)90185-f. [DOI] [PubMed] [Google Scholar]
  9. Murphey R. K., Possidente D. R., Vandervorst P., Ghysen A. Compartments and the topography of leg afferent projections in Drosophila. J Neurosci. 1989 Sep;9(9):3209–3217. doi: 10.1523/JNEUROSCI.09-09-03209.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pardue M. L., Gall J. G. Nucleic acid hybridization to the DNA of cytological preparations. Methods Cell Biol. 1975;10:1–16. doi: 10.1016/s0091-679x(08)60727-x. [DOI] [PubMed] [Google Scholar]
  11. Perrimon N., Smouse D., Miklos G. L. Developmental genetics of loci at the base of the X chromosome of Drosophila melanogaster. Genetics. 1989 Feb;121(2):313–331. doi: 10.1093/genetics/121.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pirrotta V. Vectors for P-mediated transformation in Drosophila. Biotechnology. 1988;10:437–456. doi: 10.1016/b978-0-409-90042-2.50028-3. [DOI] [PubMed] [Google Scholar]
  13. Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shotwell S. L. Cyclic adenosine 3':5'-monophosphate phosphodiesterase and its role in learning in Drosophila. J Neurosci. 1983 Apr;3(4):739–747. doi: 10.1523/JNEUROSCI.03-04-00739.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Thomas J. B., Wyman R. J. Mutations altering synaptic connectivity between identified neurons in Drosophila. J Neurosci. 1984 Feb;4(2):530–538. doi: 10.1523/JNEUROSCI.04-02-00530.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vandervorst P., Ghysen A. Genetic control of sensory connections in Drosophila. Nature. 1980 Jul 3;286(5768):65–67. doi: 10.1038/286065a0. [DOI] [PubMed] [Google Scholar]
  17. Woodard C., Huang T., Sun H., Helfand S. L., Carlson J. Genetic analysis of olfactory behavior in Drosophila: a new screen yields the ota mutants. Genetics. 1989 Oct;123(2):315–326. doi: 10.1093/genetics/123.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES