Abstract
Robertsonian chromosomes are metacentric chromosomes formed by the joining of two telocentric chromosomes at their centromere ends. Many Robertsonian chromosomes of the mouse suppress genetic recombination near the centromere when heterozygous. We have analyzed genetic recombination and meiotic pairing in mice heterozygous for Robertsonian chromosomes and genetic markers to determine (1) the reason for this recombination suppression and (2) whether there are any consistent rules to predict which Robertsonian chromosomes will suppress recombination. Meiotic pairing was analyzed using synaptonemal complex preparations. Our data provide evidence that the underlying mechanism of recombination suppression is mechanical interference in meiotic pairing between Robertsonian chromosomes and their telocentric partners. The fact that recombination suppression is specific to individual Robertsonian chromosomes suggests that the pairing delay is caused by minor structural differences between the Robertsonian chromosomes and their telocentric homologs and that these differences arise during Robertsonian formation. Further understanding of this pairing delay is important for mouse mapping studies. In 10 mouse chromosomes (3, 4, 5, 6, 8, 9, 10, 11, 15 and 19) the distances from the centromeres to first markers may still be underestimated because they have been determined using only Robertsonian chromosomes. Our control linkage studies using C-band (heterochromatin) markers for the centromeric region provide improved estimates for the centromere-to-first-locus distance in mouse chromosomes 1, 2 and 16.
Full Text
The Full Text of this article is available as a PDF (4.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bishop D. K., Park D., Xu L., Kleckner N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell. 1992 May 1;69(3):439–456. doi: 10.1016/0092-8674(92)90446-j. [DOI] [PubMed] [Google Scholar]
- Cattanach B. M., Moseley H. Nodisjunction and reduced fertility caused by the tobacco mouse metacentric chromosomes. Cytogenet Cell Genet. 1973;12(4):264–287. doi: 10.1159/000130462. [DOI] [PubMed] [Google Scholar]
- Cattanach B. M., Williams C. E., Bailey H. Identification of the linkage groups carried by the metacentric chromosomes of the tobacco mouse (Mus poschiavinus). Cytogenetics. 1972;11(5):412–423. doi: 10.1159/000130207. [DOI] [PubMed] [Google Scholar]
- Comings D. E., Avelino E. DNA loss during Robertsonian fusion in studies of the tobacco mouse. Nat New Biol. 1972 Jun 14;237(76):199–199. doi: 10.1038/newbio237199a0. [DOI] [PubMed] [Google Scholar]
- Comings D. E., Okada T. A. Whole-mount electron microscopy of the centromere region of metacentric and telocentric mammalian chromosomes. Cytogenetics. 1970;9(6):436–449. doi: 10.1159/000130113. [DOI] [PubMed] [Google Scholar]
- Davisson M. T., Akeson E. C. An improved method for preparing G-banded chromosomes from mouse peripheral blood. Cytogenet Cell Genet. 1987;45(2):70–74. doi: 10.1159/000132432. [DOI] [PubMed] [Google Scholar]
- Davisson M. T., Eicher E. M., Green M. C. Genes on chromosome 3 of the mouse. J Hered. 1976 May-Jun;67(3):155–156. doi: 10.1093/oxfordjournals.jhered.a108692. [DOI] [PubMed] [Google Scholar]
- Dresser M. E., Moses M. J. Silver staining of synaptonemal complexes in surface spreads for light and electron microscopy. Exp Cell Res. 1979 Jul;121(2):416–419. doi: 10.1016/0014-4827(79)90023-5. [DOI] [PubMed] [Google Scholar]
- Eppig J. T., Eicher E. M. Analysis of recombination in the centromere region of mouse chromosome 7 using ovarian teratoma and backcross methods. J Hered. 1988 Nov-Dec;79(6):425–429. doi: 10.1093/oxfordjournals.jhered.a110545. [DOI] [PubMed] [Google Scholar]
- Eppig J. T., Eicher E. M. Application of the ovarian teratoma mapping method in the mouse. Genetics. 1983 Apr;103(4):797–812. doi: 10.1093/genetics/103.4.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howell W. M., Black D. A. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia. 1980 Aug 15;36(8):1014–1015. doi: 10.1007/BF01953855. [DOI] [PubMed] [Google Scholar]
- John B., Freeman M. Causes and consequences of Robertsonian exchange. Chromosoma. 1975 Sep 26;52(2):123–136. doi: 10.1007/BF00326262. [DOI] [PubMed] [Google Scholar]
- Klein J. Cytological identification of the chromosome carrying the IXth linkage group (including H-2) in the house mouse. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1594–1597. doi: 10.1073/pnas.68.7.1594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lau Y. F., Hsu T. C. Variable modes of Robertsonian fusions. Cytogenet Cell Genet. 1977;19(4):231–235. doi: 10.1159/000130813. [DOI] [PubMed] [Google Scholar]
- Lyon M. F., Butler J. M., Kemp R. The positions of the centromeres in linkage groups II and IX of the mouse. Genet Res. 1968 Apr;11(2):193–199. doi: 10.1017/s0016672300011368. [DOI] [PubMed] [Google Scholar]
- Miller D. A., Kouri R. E., Dev V. G., Grewal M. S., Hutton J. J., Miller O. J. Assignment of four linkage groups to chromosomes in Mus musculus and a cytogenetic method for locating their centromeric ends. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2699–2702. doi: 10.1073/pnas.68.11.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller O. J., Miller D. A., Kouri R. E., Allderdice P. W., Dev V. G., Grewal M. S., Hutton J. J. Identification of the mouse karyotype by quinacrine fluorescence, and tentative assignment of seven linkage groups. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1530–1533. doi: 10.1073/pnas.68.7.1530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moses M. J., Poorman P. A., Roderick T. H., Davisson M. T. Synaptonemal complex analysis of mouse chromosomal rearrangements. IV. Synapsis and synaptic adjustment in two paracentric inversions. Chromosoma. 1982;84(4):457–474. doi: 10.1007/BF00292848. [DOI] [PubMed] [Google Scholar]
- Nadeau J. H., Eicher E. M. Conserved linkage of soluble aconitase and galactose-1-phosphate uridyl transferase in mouse and man: assignment of these genes to mouse chromosome 4. Cytogenet Cell Genet. 1982;34(4):271–281. doi: 10.1159/000131817. [DOI] [PubMed] [Google Scholar]
- Padmore R., Cao L., Kleckner N. Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell. 1991 Sep 20;66(6):1239–1256. doi: 10.1016/0092-8674(91)90046-2. [DOI] [PubMed] [Google Scholar]
- Rattner J. B., Lin C. C. Centromere organization in chromosomes of the mouse. Chromosoma. 1985;92(5):325–329. doi: 10.1007/BF00327462. [DOI] [PubMed] [Google Scholar]
- Redi C. A., Garagna S., Mazzini G., Winking H. Pericentromeric heterochromatin and A-T contents during Robertsonian fusion in the house mouse. Chromosoma. 1986;94(1):31–35. doi: 10.1007/BF00293527. [DOI] [PubMed] [Google Scholar]
- Womack J. E., Davisson M. T., Eicher E. M., Kendall D. A. Mapping of nucleoside phosphorylase (Np-1) and esterase 10 (Es-10) on mouse chromosome 14. Biochem Genet. 1977 Apr;15(3-4):347–355. doi: 10.1007/BF00484465. [DOI] [PubMed] [Google Scholar]