Skip to main content
Genetics logoLink to Genetics
. 1993 May;134(1):231–242. doi: 10.1093/genetics/134.1.231

Obervations on the Induction of Position Effect Variegation of Euchromatic Genes in Drosophila Melanogaster

G V Pokholkova 1, I V Makunin 1, E S Belyaeva 1, I F Zhimulev 1
PMCID: PMC1205426  PMID: 8514132

Abstract

In the T(1;2)dor(var7) translocation, the 1A-2B7-8 segment of the X chromosome is brought to the vicinity of 2R-chromosome heterochromatin resulting in position effect variegation of dor, BR-C and more distal genes, as well as compaction of chromatin in this segment. By irradiation of T(1;2)dor(var7), nine reversions (rev) to a normal phenotype were recovered. In two cases (rev27, rev226), the 1A-2B7-8 section is relocated to the 19A region of the X chromosome, forming free duplications (1A-2B7-8/19A-20F-X-het). Modifiers of position effect do not change the normal expression of the BR-C and dor genes in these duplications. In five reversions (rev3, rev40, rev60, rev167, rev175), free duplications have formed from the 1A-2B7-8 fragment and X chromosome heterochromatin. In these rearrangements, modifiers of position effect (low temperature, removal of Y and 2R-chromosome heterochromatin and a genetic enhancer (E-var(3)201) induce position-effect again. Two reversions (rev45 and rev110) are associated with additional inversions in the original dor(var7) chromosomes. The inversions relocate part of the heterochromatin adjacent to the 1A-2B7-8 section into new positions. In T(1;2)dor(rev45), position-effect is seen in the 2B7-8-7A element as compaction spreading from 2B7-8 proximally in some cases as far as the 5D region. Thus, in rev45 the pattern of euchromatin compaction is reciprocal to that of the initial dor(var7) strain. Apparently, it is due to the same variegation-evoking center near the 2R centromere in both cases. In all nine revertants, weakening or complete disappearance of the position-effect is observed despite retention of the 20- kb heterochromatic segment adjacent to the 1A-2B7-8 region. Thus, a 20-kb heterochromatic sequence does not inactivate euchromatin joined to it.

Full Text

The Full Text of this article is available as a PDF (4.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belyaeva E. S., Zhimulev I. F. Cytogenetic and molecular aspects of position effect variegation in Drosophila. III. Continuous and discontinuous compaction of chromosomal material as a result of position effect variegation. Chromosoma. 1991 Aug;100(7):453–466. doi: 10.1007/BF00364556. [DOI] [PubMed] [Google Scholar]
  2. Eissenberg J. C., James T. C., Foster-Hartnett D. M., Hartnett T., Ngan V., Elgin S. C. Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9923–9927. doi: 10.1073/pnas.87.24.9923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Henikoff S. Position-effect variegation after 60 years. Trends Genet. 1990 Dec;6(12):422–426. doi: 10.1016/0168-9525(90)90304-o. [DOI] [PubMed] [Google Scholar]
  4. James T. C., Eissenberg J. C., Craig C., Dietrich V., Hobson A., Elgin S. C. Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur J Cell Biol. 1989 Oct;50(1):170–180. [PubMed] [Google Scholar]
  5. Kidd S., Lockett T. J., Young M. W. The Notch locus of Drosophila melanogaster. Cell. 1983 Sep;34(2):421–433. doi: 10.1016/0092-8674(83)90376-8. [DOI] [PubMed] [Google Scholar]
  6. Peacock W. J., Lohe A. R., Gerlach W. L., Dunsmuir P., Dennis E. S., Appels R. Fine structure and evolution of DNA in heterochromatin. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):1121–1135. doi: 10.1101/sqb.1978.042.01.113. [DOI] [PubMed] [Google Scholar]
  7. Reuter G., Gausz J., Gyurkovics H., Friede B., Bang R., Spierer A., Hall L. M., Spierer P. Modifiers of position-effect variegation in the region from 86C to 88B of the Drosophila melanogaster third chromosome. Mol Gen Genet. 1987 Dec;210(3):429–436. doi: 10.1007/BF00327193. [DOI] [PubMed] [Google Scholar]
  8. Schultz J. Genes, differentiation, and animal development. Brookhaven Symp Biol. 1965;18:116–147. [PubMed] [Google Scholar]
  9. Sumner A. T. A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res. 1972 Nov;75(1):304–306. doi: 10.1016/0014-4827(72)90558-7. [DOI] [PubMed] [Google Scholar]
  10. Tartof K. D., Bremer M. Mechanisms for the construction and developmental control of heterochromatin formation and imprinted chromosome domains. Dev Suppl. 1990:35–45. [PubMed] [Google Scholar]
  11. Tartof K. D., Hobbs C., Jones M. A structural basis for variegating position effects. Cell. 1984 Jul;37(3):869–878. doi: 10.1016/0092-8674(84)90422-7. [DOI] [PubMed] [Google Scholar]
  12. Yamamoto M. T., Mitchelson A., Tudor M., O'Hare K., Davies J. A., Miklos G. L. Molecular and cytogenetic analysis of the heterochromatin-euchromatin junction region of the Drosophila melanogaster X chromosome using cloned DNA sequences. Genetics. 1990 Aug;125(4):821–832. doi: 10.1093/genetics/125.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zhimulev I. F., Belyaeva E. S., Bolshakov V. N., Mal'ceva N. I. Position-effect variegation and intercalary heterochromatin: a comparative study. Chromosoma. 1989 Nov;98(5):378–387. doi: 10.1007/BF00292391. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES