Abstract
C4 and CYP21 are two adjacent, but functionally unrelated genes residing in the middle of the mammalian major histocompatibility complex (Mhc). The C4 gene codes for the fourth component of the complement cascade, whereas the CYP21 gene specifies an enzyme (cytochrome P450c21) of the glucocorticoid and mineralocorticoid pathways. The genes occur frequently in multiple copies on a single chromosome arranged in the order C4 ... CYP21 ... C4 ... CYP21. The unit of duplication (a module) is the C4-CYP21 gene pair. We sequenced the flanking regions of the C4-CYP21 modules and the intermodular regions of the chimpanzee, gorilla, and orangutan, as well as the intermodular region of an Old World monkey, the pigtail macaque. By aligning the sequences, we could identify the duplication breakpoints in these species. The breakpoint turned out to be at exactly the same position as that found previously in humans. The sequences flanking paralogous genes in the same species were found to be more similar to one another than sequences flanking orthologous genes in different species. We interpret these results as indicating that the original (primigenial) duplication occurred before the separation of apes from Old World monkeys more than 23 million years ago. The nature of the sequence at the breakpoint suggests that the duplication occurred by nonhomologous recombination. Since then, the C4-CYP21 haplotypes have been expanding and contracting by homologous crossing over which has homogenized the sequences in each species. We speculate that the reason for the concerted evolution of the primate C4-CYP21 region may be a requirement for the coevolution of certain components of the complement pathway, including the C4 component. We contrast the evolution of the C4-CYP21 region with that of other Mhc regions.
Full Text
The Full Text of this article is available as a PDF (3.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bitter-Suermann D., Krönke M., Brade V., Hadding U. Inherited polymorphism of guinea pig factor B and C4: evidence for genetic linkage between the C4 and Bf loci. J Immunol. 1977 May;118(5):1822–1826. [PubMed] [Google Scholar]
- Carroll M. C., Campbell R. D., Porter R. R. Mapping of steroid 21-hydroxylase genes adjacent to complement component C4 genes in HLA, the major histocompatibility complex in man. Proc Natl Acad Sci U S A. 1985 Jan;82(2):521–525. doi: 10.1073/pnas.82.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christiansen F. T., Bontrop R. E., Giphart M., Cameron P. U., Zhang W. J., Townend D., Jonker M., Dawkins R. L. Major histocompatibility complex ancestral haplotypes in the chimpanzee: identification using C4 allotyping. Hum Immunol. 1991 May;31(1):34–39. doi: 10.1016/0198-8859(91)90046-c. [DOI] [PubMed] [Google Scholar]
- Chung B. C., Matteson K. J., Miller W. L. Cloning and characterization of the bovine gene for steroid 21-hydroxylase (P-450c21). DNA. 1985 Jun;4(3):211–219. doi: 10.1089/dna.1985.4.211. [DOI] [PubMed] [Google Scholar]
- Dunham I., Sargent C. A., Trowsdale J., Campbell R. D. Molecular mapping of the human major histocompatibility complex by pulsed-field gel electrophoresis. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7237–7241. doi: 10.1073/pnas.84.20.7237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gitelman S. E., Bristow J., Miller W. L. Mechanism and consequences of the duplication of the human C4/P450c21/gene X locus. Mol Cell Biol. 1992 May;12(5):2124–2134. doi: 10.1128/mcb.12.5.2124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawaguchi H., Golubic M., Figueroa F., Klein J. Organization of the chimpanzee C4-CYP21 region: implications for the evolution of human genes. Eur J Immunol. 1990 Apr;20(4):739–745. doi: 10.1002/eji.1830200405. [DOI] [PubMed] [Google Scholar]
- Kawaguchi H., O'hUigin C., Klein J. Evolutionary origin of mutations in the primate cytochrome P450c21 gene. Am J Hum Genet. 1992 Apr;50(4):766–780. [PMC free article] [PubMed] [Google Scholar]
- Kay P. H., Dawkins R. L., Bowling A. T., Bernoco D. Heterogeneity and linkage of equine C4 and steroid 21-hydroxylase genes. J Immunogenet. 1987 Aug-Oct;14(4-5):247–253. doi: 10.1111/j.1744-313x.1987.tb00387.x. [DOI] [PubMed] [Google Scholar]
- Kay P. H., Dawkins R. L. Genetic polymorphism of complement C4 in the dog. Tissue Antigens. 1984 Mar;23(3):151–155. doi: 10.1111/j.1399-0039.1984.tb00025.x. [DOI] [PubMed] [Google Scholar]
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
- Kirszenbaum M., Renard C., Geffrotin C., Chardon P., Vaiman M. Evidence for mapping pig C4 gene(s) within the pig major histocompatibility complex (SLA). Anim Blood Groups Biochem Genet. 1985;16(1):65–68. doi: 10.1111/j.1365-2052.1985.tb01453.x. [DOI] [PubMed] [Google Scholar]
- Klein J., O'hUigin C., Figueroa F., Mayer W. E., Klein D. Different modes of Mhc evolution in primates. Mol Biol Evol. 1993 Jan;10(1):48–59. doi: 10.1093/oxfordjournals.molbev.a039999. [DOI] [PubMed] [Google Scholar]
- Koop B. F., Siemieniak D., Slightom J. L., Goodman M., Dunbar J., Wright P. C., Simons E. L. Tarsius delta- and beta-globin genes: conversions, evolution, and systematic implications. J Biol Chem. 1989 Jan 5;264(1):68–79. [PubMed] [Google Scholar]
- Law S. K., Dodds A. W., Porter R. R. A comparison of the properties of two classes, C4A and C4B, of the human complement component C4. EMBO J. 1984 Aug;3(8):1819–1823. doi: 10.1002/j.1460-2075.1984.tb02052.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levi-Strauss M., Tosi M., Steinmetz M., Klein J., Meo T. Multiple duplications of complement C4 gene correlate with H-2-controlled testosterone-independent expression of its sex-limited isoform, C4-Slp. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1746–1750. doi: 10.1073/pnas.82.6.1746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumoto K., Arai M., Ishihara N., Ando A., Inoko H., Ikemura T. Cluster of fibronectin type III repeats found in the human major histocompatibility complex class III region shows the highest homology with the repeats in an extracellular matrix protein, tenascin. Genomics. 1992 Mar;12(3):485–491. doi: 10.1016/0888-7543(92)90438-x. [DOI] [PubMed] [Google Scholar]
- Mayer W. E., Jonker M., Klein D., Ivanyi P., van Seventer G., Klein J. Nucleotide sequences of chimpanzee MHC class I alleles: evidence for trans-species mode of evolution. EMBO J. 1988 Sep;7(9):2765–2774. doi: 10.1002/j.1460-2075.1988.tb03131.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLean R. H., Donohoue P. A., Jospe N., Bias W. B., Van Dop C., Migeon C. J. Restriction fragment analysis of duplication of the fourth component of complement (C4A). Genomics. 1988 Jan;2(1):76–85. doi: 10.1016/0888-7543(88)90111-5. [DOI] [PubMed] [Google Scholar]
- Morel Y., Bristow J., Gitelman S. E., Miller W. L. Transcript encoded on the opposite strand of the human steroid 21-hydroxylase/complement component C4 gene locus. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6582–6586. doi: 10.1073/pnas.86.17.6582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan B. P., Walport M. J. Complement deficiency and disease. Immunol Today. 1991 Sep;12(9):301–306. doi: 10.1016/0167-5699(91)90003-C. [DOI] [PubMed] [Google Scholar]
- Porter R. R. The polymorphism of the complement genes in HLA. Ann Inst Pasteur Immunol. 1985 Jan-Feb;136C(1):91–101. doi: 10.1016/s0769-2625(85)80042-8. [DOI] [PubMed] [Google Scholar]
- Rasheed S., Rongey R. W., Bruszweski J., Nelson-Rees W. A., Rabin H., Neubauer R. H., Esra G., Gardner M. B. Establishment of a cell line with associated Epstein-Barr-like virus from a leukemic orangutan. Science. 1977 Oct 28;198(4315):407–409. doi: 10.1126/science.198878. [DOI] [PubMed] [Google Scholar]
- Roos M. H., Atkinson J. P., Shreffler D. C. Molecular characterization of the Ss and Slp (C4) proteins of the mouse H-2 complex: subunit composition, chain size polymorphism, and an intracellular (PRO-Ss) precursor. J Immunol. 1978 Sep;121(3):1106–1115. [PubMed] [Google Scholar]
- Roth D. B., Wilson J. H. Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol Cell Biol. 1986 Dec;6(12):4295–4304. doi: 10.1128/mcb.6.12.4295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spilliaert R., Palsdottir A., Arnason A. Analysis of the C4 genes in baleen whales using a human cDNA probe. Immunogenetics. 1990;32(2):73–76. doi: 10.1007/BF00210443. [DOI] [PubMed] [Google Scholar]
- Tosi M., Lévi-Strauss M., Georgatsou E., Amor M., Meo T. Duplications of complement and non-complement genes of the H-2S region: evolutionary aspects of the C4 isotypes and molecular analysis of their expression variants. Immunol Rev. 1985 Oct;87:151–183. doi: 10.1111/j.1600-065x.1985.tb01149.x. [DOI] [PubMed] [Google Scholar]
- White P. C., New M. I., Dupont B. Congenital adrenal hyperplasia. (1). N Engl J Med. 1987 Jun 11;316(24):1519–1524. doi: 10.1056/NEJM198706113162406. [DOI] [PubMed] [Google Scholar]
- Yoshioka H., Morohashi K., Sogawa K., Yamane M., Kominami S., Takemori S., Okada Y., Omura T., Fujii-Kuriyama Y. Structural analysis of cloned cDNA for mRNA of microsomal cytochrome P-450(C21) which catalyzes steroid 21-hydroxylation in bovine adrenal cortex. J Biol Chem. 1986 Mar 25;261(9):4106–4109. [PubMed] [Google Scholar]
- de Kroon A. I., Doxiadis G., Doxiadis I., Hensen E. J. Structure and polymorphism of the feline complement component C4. Immunogenetics. 1986;24(3):202–205. doi: 10.1007/BF00364749. [DOI] [PubMed] [Google Scholar]