Abstract
Restriction fragment length polymorphism (RFLP)-based genetic linkage maps allow us to dissect the genetic control of quantitative traits (QT) by locating individual quantitative trait loci (QTLs) on the linkage map and determining their type of gene action and the magnitude of their contribution to the phenotype of the QT. We have performed such an analysis for two traits in common bean, involving interactions between the plant host and bacteria, namely Rhizobium nodule number (NN) and resistance to common bacterial blight (CBB) caused by Xanthomonas campestris pv. phaseoli. Analyses were conducted in the progeny of a cross between BAT93 (fewer nodules; moderately resistant to CBB) and Jalo EEP558 (more nodules; susceptible to CBB). An RFLP-based linkage map for common bean based on 152 markers had previously been derived in the F(2) of this cross. Seventy F(2)-derived F(3) families were inoculated in separate greenhouse experiments with Rhizobium tropici strain UMR1899 or X. c. pv. phaseoli isolate isolate W18. Regression and interval mapping analyses were used to identify genomic regions involved in the genetic control of these traits. These two methods identified the same genomic regions for each trait, with a few exceptions. For each trait, at least four putative QTLs were identified, which accounted for approximately 50% and 75% of the phenotypic variation in NN and CBB resistance, respectively. A chromosome region on linkage group D7 carried factor(s) influencing both traits. In all other cases, the putative QTLs affecting NN and CBB were located in different linkage groups or in the same linkage group, but far apart (more than 50 cM). Both BAT93 and Jalo EEP558 contributed alleles associated with higher NN, whereas CBB resistance was always associated with BAT93 alleles. Further investigations are needed to determine whether the QTLs for NN and CBB on linkage group D7 represent linked genes or the same gene with pleiotropic effects. Identification of the QTLs raises the possibility of initiating map-based cloning and marker-assisted selection for these traits.
Full Text
The Full Text of this article is available as a PDF (2.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Edwards M. D., Stuber C. W., Wendel J. F. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics. 1987 May;116(1):113–125. doi: 10.1093/genetics/116.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher R. F., Long S. R. Rhizobium--plant signal exchange. Nature. 1992 Jun 25;357(6380):655–660. doi: 10.1038/357655a0. [DOI] [PubMed] [Google Scholar]
- Haldane J B, Waddington C H. Inbreeding and Linkage. Genetics. 1931 Jul;16(4):357–374. doi: 10.1093/genetics/16.4.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hungria M., Joseph C. M., Phillips D. A. Anthocyanidins and Flavonols, Major nod Gene Inducers from Seeds of a Black-Seeded Common Bean (Phaseolus vulgaris L.). Plant Physiol. 1991 Oct;97(2):751–758. doi: 10.1104/pp.97.2.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hungria M., Joseph C. M., Phillips D. A. Rhizobium nod Gene Inducers Exuded Naturally from Roots of Common Bean (Phaseolus vulgaris L.). Plant Physiol. 1991 Oct;97(2):759–764. doi: 10.1104/pp.97.2.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keen N. T. Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet. 1990;24:447–463. doi: 10.1146/annurev.ge.24.120190.002311. [DOI] [PubMed] [Google Scholar]
- Keim P., Diers B. W., Olson T. C., Shoemaker R. C. RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics. 1990 Nov;126(3):735–742. doi: 10.1093/genetics/126.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin B., Nienhuis J., King G., Schaefer A. Restriction fragment length polymorphisms associated with water use efficiency in tomato. Science. 1989 Mar 31;243(4899):1725–1728. doi: 10.1126/science.243.4899.1725. [DOI] [PubMed] [Google Scholar]
- Parniske M., Ahlborn B., Werner D. Isoflavonoid-inducible resistance to the phytoalexin glyceollin in soybean rhizobia. J Bacteriol. 1991 Jun;173(11):3432–3439. doi: 10.1128/jb.173.11.3432-3439.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paterson A. H., Damon S., Hewitt J. D., Zamir D., Rabinowitch H. D., Lincoln S. E., Lander E. S., Tanksley S. D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics. 1991 Jan;127(1):181–197. doi: 10.1093/genetics/127.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paterson A. H., Lander E. S., Hewitt J. D., Peterson S., Lincoln S. E., Tanksley S. D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature. 1988 Oct 20;335(6192):721–726. doi: 10.1038/335721a0. [DOI] [PubMed] [Google Scholar]
- Peters N. K., Verma D. P. Phenolic compounds as regulators of gene expression in plant-microbe relations. Mol Plant Microbe Interact. 1990 Jan-Feb;3(1):4–8. doi: 10.1094/mpmi-3-004. [DOI] [PubMed] [Google Scholar]