Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 Apr 24;81(Pt 5):417–419. doi: 10.1107/S2056989025003329

Crystal structure, Hirshfeld surface analysis and DFT studies of 2-[4-(2-methyl­prop­yl)phen­yl]-N′-[(1Z)-1-(thio­phen-2-yl)ethyl­idene]propane­hydrazide

Sarayu Jayadevan a,b, K V Sujith c, A R Biju b,*
Editor: D Choprad
PMCID: PMC12054774  PMID: 40336896

In the crystal of the title compound, N—H⋯O hydrogen bonds lead to the formation of dimers with an inter­action energy of −70.5 kJ mol−1. The two-dimensional fingerprint plots indicate that the major contributions to the crystal packing are from H⋯H (67.9%), C⋯H (13.7%), O⋯H (7.3%) and S⋯H (4.3%) inter­actions.

Keywords: crystal structure, Hirshfeld surface analysis, single crystal X-ray diffraction, inter­action energy, ibuprofen hydrazide

Abstract

In the title compound C19H24N2OS, inter­molecular N—H⋯O hydrogen bonds generate R22(8) ring motifs, forming dimers with an inter­action energy of −70.5 kJ mol−1. A short S⋯C inter­action produces another dimer with an inter­action energy of −30.6 kJ mol−1. The inter­molecular inter­actions were qu­anti­fied using Hirshfeld surface analysis. The two-dimensional fingerprint plots indicate that the major contributions to the crystal packing are from H⋯H (67.9%), C⋯H (13.7%), O⋯H (7.3%) and S⋯H (4.3%) inter­actions.

1. Chemical context

Derivatives of ibuprofen have been synthesized to enhance the efficacy and reduce the side effects commonly associated with traditional NSAIDs (Ahmadi et al., 2017). These deriv­atives have shown promising results in preliminary studies, particularly regarding anti-inflammatory, analgesic, and anti­microbial activities (Sujith et al., 2009; Dhakane et al., 2014). Compared to other derivatives of NSAIDs, ibuprofen hydrazides may offer distinct advantages, although comprehensive clinical comparisons are still limited (Kamms & Hadi, 2023). Based on the above studies, we herein report the crystal structure of the ibuprofen hydrazide derivative 2-[4-(2-methyl­prop­yl)phen­yl]-N′-[(1Z)-1-(thio­phen-2-yl)ethyl­idene]propane­hydrazide (1).1.

2. Structural commentary

The title compound crystallizes in the triclinic space group Pī with one mol­ecule in the asymmetric unit (Fig. 1) The lengths of the C—S bonds C16—S1 and C19—S1 are 1.7225 (14) and 1.7115 (18) Å, respectively, while the carbonyl bond distance C13—O1 is 1.2297 (15) Å. The torsion angle N1—N2—C14—C16 is 176.95 (10)°, while C8—C11—C13—O1 is 103.88 (14)°. The benzene (A, C5–C10; r.m.s.d. = 0.004 Å) and thio­phene (B, C16–C19/S1; r.m.s.d. = 0.004 Å) rings are not coplanar, subtending a dihedral angle of 86.69 (4)°.

Figure 1.

Figure 1

The mol­ecular structure of 1 with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, N1—H1⋯O1 hydrogen bonds [2.119 (18) Å; Table 1] lead to the formation of dimers with an Inline graphic(8) motif. Energy calculations at the B3LYP/6-31G(d, p) level were performed using Crystal Explorer 21.5 (Mackenzie et al., 2017; Spackman et al., 2021) software with the CIF as the input file. The dimer energy was found to be −70.5 kJ mol−1. In the crystal, each mol­ecule in the dimer also forms an S1⋯C14 short inter­action [3.5214 (14) Å; symmetry operation −x, 2 − y, 2 − z], forming another dimer with an Inline graphic(6) motif and thereby forming a chain running in the b-axis direction (Fig. 2). The energy of the dimer formed by this short inter­action was calculated to be −30.6 kJ mol−1.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.859 (18) 2.119 (18) 2.9537 (15) 163.6 (16)

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

A chain of molecules in the crystal structure of 1.

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was conducted using Crystal Explorer (Spackman et al., 2021) to visualize and qu­antify the inter­molecular inter­actions in the title mol­ecule. The Hirshfeld surface for the title compound mapped over dnorm is shown in Fig. 3. The red region is attributed to the N1—H1⋯O1 inter­action. The two-dimensional fingerprint plots in Fig. 4 indicate that the major contributions to the crystal packing are from H⋯H (67.9%), C⋯H (13.7%), O⋯H (7.3%) and S⋯H (4.3%) inter­actions.

Figure 3.

Figure 3

The Hirshfeld surface of the title compound mapped over dnorm with dashed lines indicating the N—H⋯·O hydrogen bonds that lead to the formation of dimers.

Figure 4.

Figure 4

The two-dimensional fingerprint plots of the title mol­ecule, showing all inter­actions and those delineated into H⋯H, O⋯H/H⋯O and S⋯H/ S⋯H.

5. Database Survey

A search of the Cambridge Structural Database (CSD, updated to January 2025; Groom et al., 2016) for the 2-(4-iso­butyl­phen­yl)-N′-methyl­propane­hydrazide moiety yielded two closely related structures: 1-[2-(4-iso­butyl­phen­yl)prop­ano­yl]thio­semicarbazide (2; CSD refcode HOLQIJ; Fun & Kia et al., 2009) and N-(2,4-dioxo-1,3-thia­zolidin-3-yl)-2-(4-iso­butyl­phen­yl)propenamide (3; CSD refcode HUCTUV; Fun & Goh et al., 2009). In compound 2, the crystal structure features N—H⋯O and N—H⋯S hydrogen bonds, with donor–acceptor distances of 2.09 (15) and 2.495 (13) Å, respectively, leading to a supra­molecular architecture. In compound 3, the supra­molecular structure is governed by N—H⋯O hydrogen bonding [1.94 (3) Å], along with several C—H⋯O inter­actions.

6. Synthesis and crystallization

The title compound was obtained by refluxing 2-[4-(2-methyl­prop­yl)phen­yl]propane­hydrazide (0.01 mol) and 2-acetyl thio­phene (0.01 mol) in ethanol (20 ml) by adding a catalytic amount of concentrated sulfuric acid for 1 h. The excess solvent was removed under reduced pressure. The solid product obtained was filtered, washed with ethanol, and dried. Single crystals suitable for X-ray analysis were obtained by slow evaporation from an ethanol solution with 80% yield and melting point 340–342 K.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were refined using a DFIX restraint to ensure chemically reasonable bond lengths and angles, with their Uiso(H) values constrained to 1.5 times the Ueq of their pivot atoms for terminal sp3 carbon atoms and 1.2 times for all other carbon atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C19H24N2OS
M r 328.46
Crystal system, space group Triclinic, PInline graphic
Temperature (K) 293
a, b, c (Å) 7.9057 (3), 10.1929 (3), 12.2794 (3)
α, β, γ (°) 83.238 (1), 89.201 (1), 71.122 (1)
V3) 929.45 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.77 × 0.66 × 0.55
 
Data collection
Diffractometer Bruker D8 Quest Eco
Absorption correction Multi-scan (SADABS, Krause et al., 2015)
Tmin, Tmax 0.874, 0.907
No. of measured, independent and observed [I > 2σ(I)] reflections 27745, 4620, 4098
R int 0.021
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.123, 1.03
No. of reflections 4620
No. of parameters 304
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.33

Computer programs: APEX2 and SAINT (Bruker 2012), SHELXT (Sheldrick, 2015a), SHELXL(Sheldrick, 2015b), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989025003329/dx2065sup1.cif

e-81-00417-sup1.cif (812.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025003329/dx2065Isup2.hkl

e-81-00417-Isup2.hkl (221.7KB, hkl)
e-81-00417-Isup3.cml (2.3KB, cml)

Supporting information file. DOI: 10.1107/S2056989025003329/dx2065Isup3.cml

CCDC reference: 2443395

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Department of Chemistry, Sir Syed College, Taliparamba for providing the computational lab facility. The authors thank the Laboratory of X-ray Crystallography, Department of Physics, Periyar University, Salem, for assistance with data collection for single-crystal XRD studies.

supplementary crystallographic information

2-[4-(2-Methylpropyl)phenyl]-N'-[(1Z)-1-(thiophen-2-yl)ethylidene]propanehydrazide . Crystal data

C19H24N2OS Z = 2
Mr = 328.46 F(000) = 352
Triclinic, P1 Dx = 1.174 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.9057 (3) Å Cell parameters from 27745 reflections
b = 10.1929 (3) Å θ = 2.7–28.3°
c = 12.2794 (3) Å µ = 0.18 mm1
α = 83.238 (1)° T = 293 K
β = 89.201 (1)° BLOCK, white
γ = 71.122 (1)° 0.77 × 0.66 × 0.55 mm
V = 929.45 (5) Å3

2-[4-(2-Methylpropyl)phenyl]-N'-[(1Z)-1-(thiophen-2-yl)ethylidene]propanehydrazide . Data collection

Bruker D8 Quest Eco diffractometer 4098 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
phi and ω scans θmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan (SADABS, Krause et al., 2015) h = −10→10
Tmin = 0.874, Tmax = 0.907 k = −13→13
27745 measured reflections l = −16→16
4620 independent reflections

2-[4-(2-Methylpropyl)phenyl]-N'-[(1Z)-1-(thiophen-2-yl)ethylidene]propanehydrazide . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.1712P] where P = (Fo2 + 2Fc2)/3
4620 reflections (Δ/σ)max = 0.001
304 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.33 e Å3
0 constraints

2-[4-(2-Methylpropyl)phenyl]-N'-[(1Z)-1-(thiophen-2-yl)ethylidene]propanehydrazide . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

2-[4-(2-Methylpropyl)phenyl]-N'-[(1Z)-1-(thiophen-2-yl)ethylidene]propanehydrazide . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
H7 0.214 (2) 1.0985 (18) 0.6861 (13) 0.061 (4)*
H11 −0.014 (2) 1.2611 (16) 0.7709 (12) 0.051 (4)*
H3 0.7134 (19) 1.3440 (16) 0.4536 (12) 0.050 (4)*
H10 0.538 (2) 1.4079 (17) 0.6116 (13) 0.061 (4)*
H4B 0.744 (2) 1.0670 (19) 0.5259 (14) 0.064 (4)*
H12B −0.225 (3) 1.480 (2) 0.7002 (18) 0.093 (6)*
H6 0.487 (2) 1.0259 (18) 0.6006 (14) 0.064 (4)*
H9 0.267 (2) 1.4757 (18) 0.6996 (14) 0.066 (5)*
H4A 0.816 (2) 1.1609 (18) 0.5930 (15) 0.066 (5)*
H1A 0.603 (2) 1.173 (2) 0.3246 (15) 0.073 (5)*
H1C 0.468 (3) 1.291 (2) 0.3788 (16) 0.081 (6)*
H2B 0.929 (3) 1.263 (2) 0.3186 (18) 0.085 (6)*
H2C 1.001 (3) 1.205 (2) 0.438 (2) 0.102 (8)*
H12A −0.118 (3) 1.413 (2) 0.6042 (19) 0.090 (6)*
H1B 0.591 (3) 1.327 (2) 0.2852 (18) 0.085 (6)*
H1 0.107 (2) 1.3514 (19) 1.0060 (15) 0.068 (5)*
H19 0.276 (3) 0.649 (2) 0.9227 (19) 0.099 (7)*
H12C −0.080 (3) 1.536 (2) 0.6532 (18) 0.093 (7)*
H2A 0.940 (3) 1.108 (2) 0.3691 (17) 0.089 (6)*
H17 0.426 (3) 0.840 (2) 1.1552 (19) 0.087 (6)*
H15A 0.198 (4) 1.177 (3) 1.166 (2) 0.134 (10)*
H15B 0.342 (4) 1.212 (3) 1.113 (3) 0.140 (10)*
H15C 0.371 (4) 1.072 (3) 1.171 (2) 0.121 (9)*
H18 0.433 (3) 0.615 (2) 1.1025 (19) 0.100 (7)*
S1 0.20178 (5) 0.88866 (4) 0.90928 (3) 0.05992 (13)
N2 0.16268 (14) 1.17435 (11) 0.94142 (8) 0.0464 (2)
C8 0.20740 (16) 1.29536 (11) 0.69966 (9) 0.0410 (2)
N1 0.11506 (16) 1.31606 (11) 0.94519 (9) 0.0499 (2)
C6 0.4414 (2) 1.11989 (12) 0.61919 (10) 0.0515 (3)
O1 −0.01124 (18) 1.53227 (10) 0.86090 (8) 0.0697 (3)
C11 0.02513 (17) 1.34485 (13) 0.75071 (10) 0.0464 (3)
C9 0.30698 (17) 1.38476 (12) 0.67826 (11) 0.0481 (3)
C10 0.46957 (18) 1.34333 (12) 0.62781 (11) 0.0509 (3)
C5 0.54019 (17) 1.20942 (11) 0.59659 (9) 0.0452 (3)
C7 0.2783 (2) 1.16138 (13) 0.67006 (10) 0.0508 (3)
C16 0.27929 (17) 0.94374 (13) 1.02006 (10) 0.0493 (3)
C4 0.71791 (18) 1.16349 (13) 0.54132 (12) 0.0532 (3)
C14 0.24044 (16) 1.09260 (13) 1.02689 (10) 0.0471 (3)
C13 0.03963 (17) 1.40564 (13) 0.85616 (10) 0.0483 (3)
C3 0.73007 (17) 1.25536 (12) 0.43557 (11) 0.0504 (3)
C19 0.2924 (3) 0.71716 (17) 0.96246 (16) 0.0715 (4)
C15 0.2901 (3) 1.1379 (2) 1.13036 (14) 0.0667 (4)
C17 0.3711 (2) 0.83168 (17) 1.09363 (14) 0.0662 (4)
C1 0.5877 (2) 1.26297 (17) 0.35180 (13) 0.0626 (4)
C12 −0.1107 (2) 1.4535 (2) 0.67142 (15) 0.0662 (4)
C2 0.9153 (2) 1.20371 (19) 0.38798 (19) 0.0730 (5)
C18 0.3772 (3) 0.70272 (18) 1.05916 (17) 0.0793 (5)

2-[4-(2-Methylpropyl)phenyl]-N'-[(1Z)-1-(thiophen-2-yl)ethylidene]propanehydrazide . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0657 (2) 0.0562 (2) 0.0589 (2) −0.01866 (16) 0.00501 (16) −0.01461 (15)
N2 0.0515 (5) 0.0443 (5) 0.0446 (5) −0.0157 (4) 0.0091 (4) −0.0100 (4)
C8 0.0512 (6) 0.0374 (5) 0.0349 (5) −0.0146 (4) 0.0009 (4) −0.0062 (4)
N1 0.0637 (6) 0.0459 (5) 0.0423 (5) −0.0181 (5) 0.0081 (4) −0.0131 (4)
C6 0.0726 (8) 0.0343 (5) 0.0478 (6) −0.0158 (5) 0.0117 (6) −0.0113 (4)
O1 0.1087 (9) 0.0434 (5) 0.0536 (5) −0.0177 (5) 0.0126 (5) −0.0136 (4)
C11 0.0506 (6) 0.0452 (6) 0.0464 (6) −0.0183 (5) 0.0035 (5) −0.0101 (5)
C9 0.0554 (7) 0.0323 (5) 0.0572 (7) −0.0135 (5) 0.0081 (5) −0.0107 (5)
C10 0.0545 (7) 0.0363 (5) 0.0632 (7) −0.0163 (5) 0.0087 (6) −0.0077 (5)
C5 0.0543 (6) 0.0348 (5) 0.0413 (5) −0.0081 (4) 0.0028 (5) −0.0019 (4)
C7 0.0706 (8) 0.0403 (6) 0.0494 (6) −0.0263 (6) 0.0123 (6) −0.0134 (5)
C16 0.0489 (6) 0.0508 (6) 0.0459 (6) −0.0128 (5) 0.0103 (5) −0.0078 (5)
C4 0.0526 (7) 0.0384 (6) 0.0581 (7) −0.0022 (5) 0.0054 (5) −0.0006 (5)
C14 0.0454 (6) 0.0516 (6) 0.0437 (6) −0.0141 (5) 0.0089 (4) −0.0098 (5)
C13 0.0564 (7) 0.0447 (6) 0.0460 (6) −0.0176 (5) 0.0111 (5) −0.0116 (5)
C3 0.0542 (7) 0.0345 (5) 0.0573 (7) −0.0073 (5) 0.0124 (5) −0.0062 (5)
C19 0.0836 (11) 0.0522 (8) 0.0815 (11) −0.0230 (7) 0.0200 (9) −0.0180 (7)
C15 0.0766 (10) 0.0660 (9) 0.0523 (8) −0.0127 (8) −0.0068 (7) −0.0152 (7)
C17 0.0760 (10) 0.0569 (8) 0.0569 (8) −0.0110 (7) 0.0005 (7) −0.0022 (6)
C1 0.0711 (9) 0.0559 (8) 0.0540 (8) −0.0124 (7) 0.0055 (7) −0.0043 (6)
C12 0.0561 (8) 0.0679 (9) 0.0691 (9) −0.0121 (7) −0.0106 (7) −0.0087 (8)
C2 0.0617 (9) 0.0606 (9) 0.0887 (12) −0.0100 (7) 0.0251 (9) −0.0085 (8)
C18 0.0958 (13) 0.0514 (8) 0.0786 (11) −0.0105 (8) 0.0100 (9) 0.0008 (8)

2-[4-(2-Methylpropyl)phenyl]-N'-[(1Z)-1-(thiophen-2-yl)ethylidene]propanehydrazide . Geometric parameters (Å, º)

S1—C19 1.7115 (18) C4—C3 1.5300 (18)
S1—C16 1.7225 (14) C4—H4B 0.978 (18)
N2—C14 1.2862 (16) C4—H4A 1.003 (18)
N2—N1 1.3761 (14) C14—C15 1.5005 (19)
C8—C9 1.3860 (17) C3—C1 1.512 (2)
C8—C7 1.3881 (15) C3—C2 1.521 (2)
C8—C11 1.5175 (17) C3—H3 0.923 (15)
N1—C13 1.3473 (17) C19—C18 1.341 (3)
N1—H1 0.859 (19) C19—H19 0.93 (2)
C6—C5 1.3841 (18) C15—H15A 0.85 (3)
C6—C7 1.3853 (19) C15—H15B 0.97 (4)
C6—H6 0.962 (17) C15—H15C 0.87 (3)
O1—C13 1.2297 (15) C17—C18 1.414 (3)
C11—C13 1.5208 (17) C17—H17 0.90 (2)
C11—C12 1.527 (2) C1—H1A 0.98 (2)
C11—H11 1.002 (16) C1—H1C 0.96 (2)
C9—C10 1.3793 (18) C1—H1B 0.99 (2)
C9—H9 0.945 (17) C12—H12B 0.93 (2)
C10—C5 1.3949 (16) C12—H12A 0.98 (2)
C10—H10 0.979 (17) C12—H12C 0.95 (2)
C5—C4 1.5087 (18) C2—H2B 1.01 (2)
C7—H7 0.942 (18) C2—H2C 0.92 (3)
C16—C17 1.373 (2) C2—H2A 0.99 (2)
C16—C14 1.4599 (18) C18—H18 0.96 (2)
C19—S1—C16 91.71 (8) O1—C13—C11 121.97 (12)
C14—N2—N1 117.92 (10) N1—C13—C11 117.84 (11)
C9—C8—C7 117.67 (11) C1—C3—C2 110.69 (14)
C9—C8—C11 120.64 (10) C1—C3—C4 111.69 (12)
C7—C8—C11 121.67 (11) C2—C3—C4 110.71 (12)
C13—N1—N2 120.01 (10) C1—C3—H3 108.8 (9)
C13—N1—H1 116.0 (12) C2—C3—H3 107.3 (9)
N2—N1—H1 122.2 (12) C4—C3—H3 107.4 (9)
C5—C6—C7 121.56 (11) C18—C19—S1 112.06 (14)
C5—C6—H6 119.9 (10) C18—C19—H19 130.0 (14)
C7—C6—H6 118.5 (10) S1—C19—H19 118.0 (14)
C8—C11—C13 109.93 (10) C14—C15—H15A 112 (2)
C8—C11—C12 111.19 (12) C14—C15—H15B 110.5 (19)
C13—C11—C12 110.02 (11) H15A—C15—H15B 102 (3)
C8—C11—H11 107.7 (8) C14—C15—H15C 113.9 (18)
C13—C11—H11 107.3 (9) H15A—C15—H15C 113 (3)
C12—C11—H11 110.6 (9) H15B—C15—H15C 105 (2)
C10—C9—C8 121.41 (10) C16—C17—C18 112.44 (16)
C10—C9—H9 117.7 (11) C16—C17—H17 123.3 (14)
C8—C9—H9 120.9 (11) C18—C17—H17 124.2 (14)
C9—C10—C5 121.13 (11) C3—C1—H1A 113.0 (11)
C9—C10—H10 120.7 (9) C3—C1—H1C 114.2 (12)
C5—C10—H10 118.1 (10) H1A—C1—H1C 104.8 (16)
C6—C5—C10 117.32 (11) C3—C1—H1B 111.6 (12)
C6—C5—C4 121.29 (11) H1A—C1—H1B 104.6 (16)
C10—C5—C4 121.38 (11) H1C—C1—H1B 108.0 (16)
C6—C7—C8 120.91 (11) C11—C12—H12B 111.8 (14)
C6—C7—H7 120.5 (10) C11—C12—H12A 108.8 (13)
C8—C7—H7 118.6 (10) H12B—C12—H12A 107.1 (18)
C17—C16—C14 129.06 (13) C11—C12—H12C 112.5 (14)
C17—C16—S1 110.69 (11) H12B—C12—H12C 107.5 (18)
C14—C16—S1 120.23 (10) H12A—C12—H12C 109.0 (19)
C5—C4—C3 114.56 (10) C3—C2—H2B 112.8 (11)
C5—C4—H4B 109.1 (10) C3—C2—H2C 110.4 (15)
C3—C4—H4B 109.4 (10) H2B—C2—H2C 106.9 (19)
C5—C4—H4A 110.0 (10) C3—C2—H2A 109.9 (12)
C3—C4—H4A 108.2 (10) H2B—C2—H2A 107.1 (17)
H4B—C4—H4A 105.1 (13) H2C—C2—H2A 109.6 (19)
N2—C14—C16 115.38 (11) C19—C18—C17 113.10 (16)
N2—C14—C15 125.65 (13) C19—C18—H18 124.1 (14)
C16—C14—C15 118.95 (12) C17—C18—H18 122.7 (14)
O1—C13—N1 120.17 (12)
C14—N2—N1—C13 177.41 (11) N1—N2—C14—C16 176.95 (10)
C9—C8—C11—C13 −53.84 (15) N1—N2—C14—C15 −2.2 (2)
C7—C8—C11—C13 127.93 (12) C17—C16—C14—N2 175.00 (14)
C9—C8—C11—C12 68.24 (15) S1—C16—C14—N2 −6.57 (15)
C7—C8—C11—C12 −109.99 (14) C17—C16—C14—C15 −5.8 (2)
C7—C8—C9—C10 0.99 (19) S1—C16—C14—C15 172.59 (12)
C11—C8—C9—C10 −177.31 (12) N2—N1—C13—O1 176.36 (12)
C8—C9—C10—C5 −0.2 (2) N2—N1—C13—C11 −5.30 (17)
C7—C6—C5—C10 0.43 (19) C8—C11—C13—O1 103.88 (14)
C7—C6—C5—C4 179.90 (12) C12—C11—C13—O1 −18.90 (18)
C9—C10—C5—C6 −0.56 (19) C8—C11—C13—N1 −74.43 (14)
C9—C10—C5—C4 179.97 (12) C12—C11—C13—N1 162.80 (13)
C5—C6—C7—C8 0.4 (2) C5—C4—C3—C1 −57.96 (16)
C9—C8—C7—C6 −1.11 (19) C5—C4—C3—C2 178.20 (14)
C11—C8—C7—C6 177.17 (12) C16—S1—C19—C18 −0.08 (15)
C19—S1—C16—C17 0.06 (12) C14—C16—C17—C18 178.51 (14)
C19—S1—C16—C14 −178.63 (11) S1—C16—C17—C18 −0.04 (19)
C6—C5—C4—C3 123.70 (14) S1—C19—C18—C17 0.1 (2)
C10—C5—C4—C3 −56.85 (18) C16—C17—C18—C19 0.0 (2)

2-[4-(2-Methylpropyl)phenyl]-N'-[(1Z)-1-(thiophen-2-yl)ethylidene]propanehydrazide . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.859 (18) 2.119 (18) 2.9537 (15) 163.6 (16)

Symmetry code: (i) −x, −y+3, −z+2.

Table 2. The energy values (eV) of global reactivity descriptors for the title compound.

Global reactivity Descriptors Calculated values (eV)
E(HOMO) -6.0826
E(LUMO) -1.7796
Energy gap 4.303
Electron affinity (A) 1.7796
Ionisation energy (I) 6.0826
Electronegativity (χ) 3.9311
Chemical hardness (η) 2.1515
Chemical potential (µ) -3.9311
Chemical hardness (S) 0.2324
Electrophilicity index (ω) 3.5913

Funding Statement

Funding for this research was provided by: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

  1. Ahmadi, A., Khalili, M., Olama, Z., Karami, S. & Nahri-Niknafs, B. (2017). Mini Rev. Med. Chem.17, 799–804. [DOI] [PubMed]
  2. Bruker (2012). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.
  3. Dhakane, V. D., Chavan, H. V., Thakare, V. N., Adsul, L. K., Shringare, S. N. & Bandgar, B. P. (2014). Med. Chem. Res.23, 503–517.
  4. Farrugia, L. J. (2012). J. Appl. Cryst.45, 849–854.
  5. Fun, H.-K., Goh, J. H., Vinayaka, A. C. & Kalluraya, B. (2009). Acta Cryst. E65, o2094. [DOI] [PMC free article] [PubMed]
  6. Fun, H.-K., Kia, R., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2009). Acta Cryst. E65, o621. [DOI] [PMC free article] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  9. Kamms, Z. D. & Hadi, M. K. (2023). Int. J. Drug Deliv. Technol.13, 376–381.
  10. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  11. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  13. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  14. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  15. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
  16. Sujith, K. V., Rao, J. N., Shetty, P. & Kalluraya, B. (2009). Eur. J. Med. Chem.44, 3697–3702. [DOI] [PubMed]
  17. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989025003329/dx2065sup1.cif

e-81-00417-sup1.cif (812.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025003329/dx2065Isup2.hkl

e-81-00417-Isup2.hkl (221.7KB, hkl)
e-81-00417-Isup3.cml (2.3KB, cml)

Supporting information file. DOI: 10.1107/S2056989025003329/dx2065Isup3.cml

CCDC reference: 2443395

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES