Abstract
More than 200 mutants of Aspergillus nidulans were isolated as hypersensitive to the monofunctional alkylating agent MNNG and/or UV-irradiation (designated nuv mutants). Of these, 23 were selected for further characterization. All were markedly hypersensitive to both MNNG and the quasi-UV-mimetic mutagen 4-NQO. The hypersensitive phenotype of each mutant was shown to result from mutation of a single gene. The nuv mutants exhibited a diverse range of growth responses on solid media containing various concentrations of MNNG or 4-NQO. This suggested that they represented many nonallelic mutations. Analysis to determine the dominance/recessiveness of the nuv mutations with respect to hypersensitivity revealed that most were fully recessive, although several appeared to be semidominant. A novel system to assay homologous mitotic recombination using simple plating tests was developed. The system was exploited to determine the effects of the nuv mutations on mitotic recombination. Of the 23 mutations tested, 10 caused a hypo-recombination phenotype and three a hyper-recombination phenotype, while 10 appeared to have no effect on recombination. The hypo-rec effect of one of the mutations, nuv-117, appeared to be semidominant. Transcomplementation analysis between seven of the nuv mutations defined at least six nonallelic loci.
Full Text
The Full Text of this article is available as a PDF (3.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bergen L. G., Morris N. R. Kinetics of the nuclear division cycle of Aspergillus nidulans. J Bacteriol. 1983 Oct;156(1):155–160. doi: 10.1128/jb.156.1.155-160.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark A. J. Recombination deficient mutants of E. coli and other bacteria. Annu Rev Genet. 1973;7:67–86. doi: 10.1146/annurev.ge.07.120173.000435. [DOI] [PubMed] [Google Scholar]
- Delić V., Hopwood D. A., Friend E. J. Mutangenesis by N-methyl-N'-nitro-N-nitrosoguanidine (NTG) in Streptomyces coelicolor. Mutat Res. 1970 Feb;9(2):167–182. doi: 10.1016/0027-5107(70)90055-2. [DOI] [PubMed] [Google Scholar]
- Evseeva G. V., Kameneva S. V. Geneticheskii kontrol' chuvstvitel'nosti k mutagennym faktoram u Aspergillus nidulans. Soobshchenie VII. Izuchenie nasledovaniia perekrestnoi chuvstvitel'nosti k razlichnym mutagennym faktoram u uvs-mutantov. Genetika. 1977;13(11):1981–1987. [PubMed] [Google Scholar]
- Friedberg E. C. Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol Rev. 1988 Mar;52(1):70–102. doi: 10.1128/mr.52.1.70-102.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris P. V., Boyd J. B. Pyrimidine dimers in Drosophila chromatin become increasingly accessible after irradiation. Mutat Res. 1987 Jan;183(1):53–60. doi: 10.1016/0167-8817(87)90045-9. [DOI] [PubMed] [Google Scholar]
- Holliday R. Radiation sensitive mutants of Ustilago maydis. Mutat Res. 1965 Dec;2(6):557–559. doi: 10.1016/0027-5107(65)90022-9. [DOI] [PubMed] [Google Scholar]
- Howard-Flanders P., Theriot L. Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination. Genetics. 1966 Jun;53(6):1137–1150. doi: 10.1093/genetics/53.6.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansen G. J. Abnormal frequencies of spontaneous mitotic recombination in uvsB and uvsC mutants of Aspergillus nidulans. Mutat Res. 1970 Jul;10(1):33–41. doi: 10.1016/0027-5107(70)90143-0. [DOI] [PubMed] [Google Scholar]
- Kern R., Zimmermann F. K. The influence of defects in excision and error prone repair on spontaneous and induced mitotic recombination and mutation in Saccharomyces cerevisiae. Mol Gen Genet. 1978 Apr 25;161(1):81–88. doi: 10.1007/BF00266618. [DOI] [PubMed] [Google Scholar]
- Käfer E., Mayor O. Genetic analysis of DNA repair in Aspergillus: evidence for different types of MMS-sensitive hyperrec mutants. Mutat Res. 1986 Jul;161(2):119–134. doi: 10.1016/0027-5107(86)90003-5. [DOI] [PubMed] [Google Scholar]
- Lehmann A. R., Carr A. M., Watts F. Z., Murray J. M. DNA repair in the fission yeast, Schizosaccharomyces pombe. Mutat Res. 1991 Sep-Oct;250(1-2):205–210. doi: 10.1016/0027-5107(91)90177-p. [DOI] [PubMed] [Google Scholar]
- Malone R. E., Montelone B. A., Edwards C., Carney K., Hoekstra M. F. A reexamination of the role of the RAD52 gene in spontaneous mitotic recombination. Curr Genet. 1988 Sep;14(3):211–223. doi: 10.1007/BF00376741. [DOI] [PubMed] [Google Scholar]
- McCully K. S., Forbes E. The use of p-fluorophenylalanine with 'master strains' of Aspergillus nidulans for assigning genes to linkage groups. Genet Res. 1965 Nov;6(3):352–359. doi: 10.1017/s0016672300004249. [DOI] [PubMed] [Google Scholar]
- Orr-Weaver T. L., Szostak J. W. Fungal recombination. Microbiol Rev. 1985 Mar;49(1):33–58. doi: 10.1128/mr.49.1.33-58.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osman F., Cotton C., Tomsett B., Strike P. Isolation and characterisation of nuv11, a mutation affecting meiotic and mitotic recombination in Aspergillus nidulans. Biochimie. 1991 Feb-Mar;73(2-3):321–327. doi: 10.1016/0300-9084(91)90219-q. [DOI] [PubMed] [Google Scholar]
- PONTECORVO G., ROPER J. A., HEMMONS L. M., MACDONALD K. D., BUFTON A. W. J. The genetics of Aspergillus nidulans. Adv Genet. 1953;5:141–238. doi: 10.1016/s0065-2660(08)60408-3. [DOI] [PubMed] [Google Scholar]
- Prakash S., Prakash L., Burke W., Montelone B. A. Effects of the RAD52 Gene on Recombination in SACCHAROMYCES CEREVISIAE. Genetics. 1980 Jan;94(1):31–50. doi: 10.1093/genetics/94.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sedgwick B., Robins P. Isolation of mutants of Escherichia coli with increased resistance to alkylating agents: mutants deficient in thiols and mutants constitutive for the adaptive response. Mol Gen Genet. 1980;180(1):85–90. doi: 10.1007/BF00267355. [DOI] [PubMed] [Google Scholar]
- Shanfield B., Käfer E. UV-sensitive mutants increasing mitotic crossing-over in Aspergillus nidulans. Mutat Res. 1969 May-Jun;7(3):485–487. doi: 10.1016/0027-5107(69)90124-9. [DOI] [PubMed] [Google Scholar]
- Subramani S. Radiation resistance in Schizosaccharomyces pombe. Mol Microbiol. 1991 Oct;5(10):2311–2314. doi: 10.1111/j.1365-2958.1991.tb02075.x. [DOI] [PubMed] [Google Scholar]
- Swirski R. A., Shawcross S. G., Faulkner B. M., Strike P. Repair of alkylation damage in the fungus Aspergillus nidulans. Mutat Res. 1988 May;193(3):255–268. doi: 10.1016/0167-8817(88)90036-3. [DOI] [PubMed] [Google Scholar]
- Tomsett A. B., Cove D. J. Deletion mapping of the niiA niaD gene region of Aspergillus nidulans. Genet Res. 1979 Aug;34(1):19–32. doi: 10.1017/s001667230001925x. [DOI] [PubMed] [Google Scholar]
- Weinert T. A., Hartwell L. H. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science. 1988 Jul 15;241(4863):317–322. doi: 10.1126/science.3291120. [DOI] [PubMed] [Google Scholar]
- Wright P. J., Pateman J. A. Ultraviolet-light sensitive mutants of Aspergillus nidulans. Mutat Res. 1970 Jun;9(6):579–587. doi: 10.1016/0027-5107(70)90103-x. [DOI] [PubMed] [Google Scholar]