Skip to main content
Genetics logoLink to Genetics
. 1993 Aug;134(4):1023–1030. doi: 10.1093/genetics/134.4.1023

Mutants of Escherichia Coli with Increased Fidelity of DNA Replication

I J Fijalkowska 1, R L Dunn 1, R M Schaaper 1
PMCID: PMC1205570  PMID: 8375645

Abstract

To improve our understanding of the role of DNA replication fidelity in mutagenesis, we undertook a search for Escherichia coli antimutator strains with increased fidelity of DNA replication. The region between 4 and 5 min of the E. coli chromosome was mutagenized using localized mutagenesis mediated by bacteriophage P1. This region contains the dnaE and dnaQ genes, which encode, respectively, the DNA polymerase (α subunit) and 3' exonucleolytic proofreading activity (ε subunit) of DNA polymerase III holoenzyme, the enzyme primarily responsible for replicating the bacterial chromosome. The mutated bacteria were screened for antimutator phenotype in a strain defective in DNA mismatch repair (mutL), using a papillation assay based on the reversion of the galK2 mutation. In a mutL strain, mutations result primarily from DNA replication errors. Among 10,000 colonies, seven mutants were obtained whose level of papillation was reduced 5-30-fold. These mutants also displayed decreased mutation frequencies for rifampicin or nalidixic acid resistance as well as for other markers. Mapping by P1 transduction and complementation showed each to reside in dnaE. These observations support the idea that the mutants represent antimutators which replicate their DNA with increased fidelity. Mutation rates were reduced in both mutL and mutT backgrounds, but mutagenesis by ultraviolet light was not significantly affected, suggesting that the antimutator effect may be largely restricted to normal DNA replication.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann B. J. Linkage map of Escherichia coli K-12, edition 8. Microbiol Rev. 1990 Jun;54(2):130–197. doi: 10.1128/mr.54.2.130-197.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dicker I. B., Seetharam S. Cloning and nucleotide sequence of the firA gene and the firA200(Ts) allele from Escherichia coli. J Bacteriol. 1991 Jan;173(1):334–344. doi: 10.1128/jb.173.1.334-344.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Drake J. W., Allen E. F. Antimutagenic DNA polymerases of bacteriophage T4. Cold Spring Harb Symp Quant Biol. 1968;33:339–344. doi: 10.1101/sqb.1968.033.01.039. [DOI] [PubMed] [Google Scholar]
  4. Drake J. W., Greening E. O. Suppression of chemical mutagenesis in bacteriophage T4 by genetically modified DNA polymerases. Proc Natl Acad Sci U S A. 1970 Jul;66(3):823–829. doi: 10.1073/pnas.66.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Esposito M. S., Bolotin-Fukuhara M., Esposito R. E. Antimutator activity during mitosis by a meiotic mutant of yeast. Mol Gen Genet. 1975 Aug 5;139(1):9–18. doi: 10.1007/BF00267991. [DOI] [PubMed] [Google Scholar]
  6. Fijalkowska I. J., Schaaper R. M. Antimutator mutations in the alpha subunit of Escherichia coli DNA polymerase III: identification of the responsible mutations and alignment with other DNA polymerases. Genetics. 1993 Aug;134(4):1039–1044. doi: 10.1093/genetics/134.4.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Geiger J. R., Speyer J. F. A conditional antimutator in E. coli. Mol Gen Genet. 1977 May 20;153(1):87–97. doi: 10.1007/BF01036000. [DOI] [PubMed] [Google Scholar]
  8. Konrad E. B. Isolation of an Escherichia coli K-12 dnaE mutation as a mutator. J Bacteriol. 1978 Mar;133(3):1197–1202. doi: 10.1128/jb.133.3.1197-1202.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lancy E. D., Lifsics M. R., Kehres D. G., Maurer R. Isolation and characterization of mutants with deletions in dnaQ, the gene for the editing subunit of DNA polymerase III in Salmonella typhimurium. J Bacteriol. 1989 Oct;171(10):5572–5580. doi: 10.1128/jb.171.10.5572-5580.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Maki H., Horiuchi T., Sekiguchi M. Isolation of conditional lethal mutator mutants of Escherichia coli by localized mutagenesis. J Bacteriol. 1983 Mar;153(3):1361–1367. doi: 10.1128/jb.153.3.1361-1367.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maki H., Mo J. Y., Sekiguchi M. A strong mutator effect caused by an amino acid change in the alpha subunit of DNA polymerase III of Escherichia coli. J Biol Chem. 1991 Mar 15;266(8):5055–5061. [PubMed] [Google Scholar]
  12. Maki H., Sekiguchi M. MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature. 1992 Jan 16;355(6357):273–275. doi: 10.1038/355273a0. [DOI] [PubMed] [Google Scholar]
  13. Maruyama M., Horiuchi T., Maki H., Sekiguchi M. A dominant (mutD5) and a recessive (dnaQ49) mutator of Escherichia coli. J Mol Biol. 1983 Jul 15;167(4):757–771. doi: 10.1016/s0022-2836(83)80109-0. [DOI] [PubMed] [Google Scholar]
  14. McHenry C. S. DNA polymerase III holoenzyme of Escherichia coli. Annu Rev Biochem. 1988;57:519–550. doi: 10.1146/annurev.bi.57.070188.002511. [DOI] [PubMed] [Google Scholar]
  15. McHenry C. S. DNA polymerase III holoenzyme. Components, structure, and mechanism of a true replicative complex. J Biol Chem. 1991 Oct 15;266(29):19127–19130. [PubMed] [Google Scholar]
  16. Modrich P. Mechanisms and biological effects of mismatch repair. Annu Rev Genet. 1991;25:229–253. doi: 10.1146/annurev.ge.25.120191.001305. [DOI] [PubMed] [Google Scholar]
  17. Quah S. K., von Borstel R. C., Hastings P. J. The origin of spontaneous mutation in Saccharomyces cerevisiae. Genetics. 1980 Dec;96(4):819–839. doi: 10.1093/genetics/96.4.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. RYAN F. J., WAINWRIGHT L. K. Nuclear segregation and the growth of clones of spontaneous mutants of bacteria. J Gen Microbiol. 1954 Dec;11(3):364–379. doi: 10.1099/00221287-11-3-364. [DOI] [PubMed] [Google Scholar]
  19. Rydberg B. Bromouracil mutagenesis and mismatch repair in mutator strains of Escherichia coli. Mutat Res. 1978 Oct;52(1):11–24. doi: 10.1016/0027-5107(78)90091-x. [DOI] [PubMed] [Google Scholar]
  20. Schaaper R. M., Dunn R. L. Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6220–6224. doi: 10.1073/pnas.84.17.6220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schaaper R. M., Dunn R. L. Spontaneous mutation in the Escherichia coli lacI gene. Genetics. 1991 Oct;129(2):317–326. doi: 10.1093/genetics/129.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schaaper R. M. Mechanisms of mutagenesis in the Escherichia coli mutator mutD5: role of DNA mismatch repair. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8126–8130. doi: 10.1073/pnas.85.21.8126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schaaper R. M. The mutational specificity of two Escherichia coli dnaE antimutator alleles as determined from lacI mutation spectra. Genetics. 1993 Aug;134(4):1031–1038. doi: 10.1093/genetics/134.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wechsler J. A., Gross J. D. Escherichia coli mutants temperature-sensitive for DNA synthesis. Mol Gen Genet. 1971;113(3):273–284. doi: 10.1007/BF00339547. [DOI] [PubMed] [Google Scholar]
  25. Witkin E. M., McCall J. O., Volkert M. R., Wermundsen I. E. Constitutive expression of SOS functions and modulation of mutagenesis resulting from resolution of genetic instability at or near the recA locus of Escherichia coli. Mol Gen Genet. 1982;185(1):43–50. doi: 10.1007/BF00333788. [DOI] [PubMed] [Google Scholar]
  26. Yanofsky C., Cox E. C., Horn V. The unusual mutagenic specificity of an E. Coli mutator gene. Proc Natl Acad Sci U S A. 1966 Feb;55(2):274–281. doi: 10.1073/pnas.55.2.274. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES