Skip to main content
Genetics logoLink to Genetics
. 1993 Aug;134(4):1237–1247. doi: 10.1093/genetics/134.4.1237

Effects of a Locus Affecting Floral Pigmentation in Ipomoea Purpurea on Female Fitness Components

M D Rausher 1, J D Fry 1
PMCID: PMC1205591  PMID: 8375658

Abstract

A locus influencing floral pigment intensity in the morning glory, Ipomoea purpurea, is polymorphic throughout the southeastern United States. Previous work has suggested that the white allele at this locus has a transmission advantage during mating because of the effect of flower color on pollinator behavior. The experiment described here was designed to determine whether other effects of the W locus may contribute an opposing selective advantage to the dark allele. Dark homozygotes were vegetatively smaller and produced fewer flowers, seed capsules and seeds than either light heterozygotes or white homozygotes. In addition, dark homozygotes produced smaller seeds than heterozygotes, and there is some indication that white homozygotes also produced smaller seeds than heterozygotes. Pleiotropic effects on seed number thus do not seem to contribute to selection opposing the mating advantage associated with the white allele. However, pleiotropic effects on seed size might contribute to overdominance that could stabilize the W locus polymorphism.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cavener D. R., Clegg M. T. Evidence for biochemical and physiological differences between enzyme genotypes in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4444–4447. doi: 10.1073/pnas.78.7.4444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Charlesworth B. The cost of sex in relation to mating system. J Theor Biol. 1980 Jun 21;84(4):655–671. doi: 10.1016/s0022-5193(80)80026-9. [DOI] [PubMed] [Google Scholar]
  3. Gee M. S., Nelson O. E., Kuć J. Abnormal lignins produced by the brown-midrib mutants of maize. II. Comparative studies on normal and brown-midrib-1 dimethylformamide lignins. Arch Biochem Biophys. 1968 Feb;123(2):403–408. doi: 10.1016/0003-9861(68)90151-3. [DOI] [PubMed] [Google Scholar]
  4. Hedrick P. W., Thomson G. Evidence for balancing selection at HLA. Genetics. 1983 Jul;104(3):449–456. doi: 10.1093/genetics/104.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hughes A. L., Nei M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature. 1988 Sep 8;335(6186):167–170. doi: 10.1038/335167a0. [DOI] [PubMed] [Google Scholar]
  6. Karl S. A., Avise J. C. Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science. 1992 Apr 3;256(5053):100–102. doi: 10.1126/science.1348870. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES