Skip to main content
Genetics logoLink to Genetics
. 1993 Sep;135(1):161–170. doi: 10.1093/genetics/135.1.161

A Mutation Affecting the Lactate Dehydrogenase Locus Ldh-1 in the Mouse. II. Mechanism of the Ldh-a Deficiency Associated with Hemolytic Anemia

W Pretsch 1, S Merkle 1, J Favor 1, T Werner 1
PMCID: PMC1205615  PMID: 8224816

Abstract

A procarbazine hydrochloride-induced mutation at the Ldh-1 structural locus encoding the A subunit of lactate dehydrogenase (LDH) was used to study the molecular and metabolic basis of severe hemolytic anemia due to LDH-A deficiency in the mouse. The mutant allele designated Ldh-1(a-m1Neu) codes for an enzyme that as homotetramer differs from the wild-type enzyme by a marked instability, acidic shift of the pH profile, increased K(m) for pyruvate and altered inhibition by high concentrations of this substrate. Except for the latter, all these altered properties of the mutant protein contribute to the diminished LDH activity in heterozygous and homozygous mutant individuals. Impaired energy metabolism of erythrocytes indicated by a relatively low ATP concentration is suggested to result in cell death at the end of the reticulocyte stage leading to the expression of hemolytic anemia with extreme reticulocytosis and hyperbilirubinemia. Despite the severe anemia, affected homozygous mutants exhibit approximately normal body weight and do not show noticeable impairment of viability or fertility. To date no such condition is observed in man. This discrepancy is likely due to the fact that in human erythrocytes both LDH-A and LDH-B subunits are expressed such that homozygotes for a LDH-A or LDH-B deficiency would not result in a comparably extreme LDH activity deficiency.

Full Text

The Full Text of this article is available as a PDF (1,006.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benöhr H. C., Waller H. D. Metabolism in haemolytic states. Clin Haematol. 1975 Feb;4(1):45–62. [PubMed] [Google Scholar]
  2. Bernstein S. E. Inherited hemolytic disease in mice: a review and update. Lab Anim Sci. 1980 Apr;30(2 Pt 1):197–205. [PubMed] [Google Scholar]
  3. Beutler E., Mathai C. K., Smith J. E. Biochemical variants of glucose-6-phosphate dehydrogenase giving rise to congenital nonspherocytic hemolytic disease. Blood. 1968 Feb;31(2):131–150. [PubMed] [Google Scholar]
  4. CHAPMAN R. G., HENNESSEY M. A., WALTERSDORPH A. M., HUENNEKENS F. M., GABRIO B. W. Erythrocyte metabolism. V. Levels of glycolytic enzymes and regulation of glycolysis. J Clin Invest. 1962 Jun;41:1249–1256. doi: 10.1172/JCI104587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chapman R. G., Schaumburg L. Glycolysis and glycolytic enzyme activity of aging red cells in man. Changes in hexokinase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and glutamic-oxalacetic transaminase. Br J Haematol. 1967 Sep;13(5):665–678. doi: 10.1111/j.1365-2141.1967.tb08832.x. [DOI] [PubMed] [Google Scholar]
  6. Engel W., Kreutz R., Wolf U. Studies on the genetic polymorphism of lactate dehydrogenase B (phenotype B - ) in rodent erythrocytes. Biochem Genet. 1972 Aug;7(1):45–55. doi: 10.1007/BF00487009. [DOI] [PubMed] [Google Scholar]
  7. Fritz P. J., Vesell E. S., White E. L., Pruitt K. M. The roles of synthesis and degradation in determining tissue concentrations of lactate dehydrogenase-5. Proc Natl Acad Sci U S A. 1969 Feb;62(2):558–565. doi: 10.1073/pnas.62.2.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fritz P. J., White E. L., Vesell E. S., Pruitt K. M. New theory of the control of protein concentrations in animal cells. Nat New Biol. 1971 Mar 24;230(12):119–122. doi: 10.1038/newbio230119a0. [DOI] [PubMed] [Google Scholar]
  9. Hutton J. J., Bernstein S. E. Metabolic properties of erythrocytes of normal and genetically anemic mice. Biochem Genet. 1973 Nov;10(3):297–307. doi: 10.1007/BF00485707. [DOI] [PubMed] [Google Scholar]
  10. Kanno T., Sudo K., Kitamura M., Miwa S., Ichiyama A., Nishimura Y. Lactate dehydrogenase A-subunit and B-subunit deficiencies: comparison of the physiological roles of LDH isozymes. Isozymes Curr Top Biol Med Res. 1983;7:131–150. [PubMed] [Google Scholar]
  11. Kanno T., Sudo K., Maekawa M., Nishimura Y., Ukita M., Fukutake K. Lactate dehydrogenase M-subunit deficiency: a new type of hereditary exertional myopathy. Clin Chim Acta. 1988 Mar 31;173(1):89–98. doi: 10.1016/0009-8981(88)90359-2. [DOI] [PubMed] [Google Scholar]
  12. Kanno T., Sudo K., Takeuchi I., Kanda S., Honda N., Nishimura Y., Oyama K. Hereditary deficiency of lactate dehydrogenase M-subunit. Clin Chim Acta. 1980 Dec 8;108(2):267–276. doi: 10.1016/0009-8981(80)90013-3. [DOI] [PubMed] [Google Scholar]
  13. Kirkman H. N. Enzyme defects. Prog Med Genet. 1972;8:125–168. [PubMed] [Google Scholar]
  14. Kremer J. P., Datta T., Dörmer P. A model of hemopoietic stress in a lactate dehydrogenase mouse mutant with hemolytic anemia. Blut. 1986 Mar;52(3):179–183. doi: 10.1007/BF00320534. [DOI] [PubMed] [Google Scholar]
  15. Kremer J. P., Datta T., Pretsch W., Charles D. J., Dörmer P. Mechanisms of compensation of hemolytic anemia in a lactate dehydrogenase mouse mutant. Exp Hematol. 1987 Jul;15(6):664–670. [PubMed] [Google Scholar]
  16. MARKS P. A., JOHNSON A. B. Relationship between the age of human erythrocytes and their osmotic resistance: a basis for separating young and old erythrocytes. J Clin Invest. 1958 Nov;37(11):1542–1548. doi: 10.1172/JCI103746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Markert C. L., Shaklee J. B., Whitt G. S. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science. 1975 Jul 11;189(4197):102–114. doi: 10.1126/science.1138367. [DOI] [PubMed] [Google Scholar]
  18. Markert C. L. The molecular basis for isozymes. Ann N Y Acad Sci. 1968 Jun 14;151(1):14–40. doi: 10.1111/j.1749-6632.1968.tb11876.x. [DOI] [PubMed] [Google Scholar]
  19. Merkle S., Favor J., Graw J., Hornhardt S., Pretsch W. Hereditary lactate dehydrogenase A-subunit deficiency as cause of early postimplantation death of homozygotes in Mus musculus. Genetics. 1992 Jun;131(2):413–421. doi: 10.1093/genetics/131.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Merkle S., Pretsch W. Characterization of triosephosphate isomerase mutants with reduced enzyme activity in Mus musculus. Genetics. 1989 Dec;123(4):837–844. doi: 10.1093/genetics/123.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Merkle S., Pretsch W. Characterization of two electrophoretic lactate dehydrogenase-A mutants in Mus musculus. Biochem Genet. 1992 Feb;30(1-2):49–59. doi: 10.1007/BF00554427. [DOI] [PubMed] [Google Scholar]
  22. Minakami S., Suzuki C., Saito T., Yoshikawa H. Studies on erythrocyte glycolysis. I. Determination of the glycolytic intermediates in human erythrocytes. J Biochem. 1965 Dec;58(6):543–550. doi: 10.1093/oxfordjournals.jbchem.a128240. [DOI] [PubMed] [Google Scholar]
  23. Miwa S., Nishina T., Kakehashi Y., Kitamura M., Hiratsuka A. Studies on erythrocyte metabolism in a case with hereditary deficiency of H-subunit of lactate dehydrogenase. Nihon Ketsueki Gakkai Zasshi. 1971 Apr;34(2):228–232. [PubMed] [Google Scholar]
  24. Pretsch W. Eight independent Ldh-1 mutations of the mouse recovered in mutagenicity experiments: biochemical characteristics and chromosomal localization. Genet Res. 1989 Apr;53(2):101–104. doi: 10.1017/s001667230002797x. [DOI] [PubMed] [Google Scholar]
  25. Seaman C., Wyss S., Piomelli S. The decline in energetic metabolism with aging of the erythrocyte and its relationship to cell death. Am J Hematol. 1980;8(1):31–42. doi: 10.1002/ajh.2830080105. [DOI] [PubMed] [Google Scholar]
  26. Unger A. E., Harris M. J., Bernstein S. E., Falcone J. C., Lux S. E. Hemolytic anemia in the mouse. Report of a new mutation and clarification of its genetics. J Hered. 1983 Mar-Apr;74(2):88–92. doi: 10.1093/oxfordjournals.jhered.a109747. [DOI] [PubMed] [Google Scholar]
  27. VESELL E. S., BEARN A. G. Variations in the lactic dehydrogenase of vertebrate erythrocytes. J Gen Physiol. 1962 Jan;45:553–565. doi: 10.1085/jgp.45.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES