Skip to main content
Genetics logoLink to Genetics
. 1993 Sep;135(1):213–222. doi: 10.1093/genetics/135.1.213

A Model Simulating the Dynamics of Plant Mitochondrial Genomes

A Atlan 1, D Couvet 1
PMCID: PMC1205620  PMID: 8224821

Abstract

Molecular evolution of the plant mitochondrial genome involves rearrangements due to the presence of highly recombining repeated sequences. As a result, this genome is composed of a set of molecules of various sizes that generate each other through recombination. The model presented simulates the evolution of various frequencies of the different types of molecules over successive cell cycles. It considers the mitochondrial genome as a population of circular molecules evolving through recombination, replication and random segregation. The model parameters are the rates of recombination of each sequence, the frequency of each type of recombination, the replication rates of the circles and the total amount of mitochondrial DNA per cell. This model demonstrates that high recombination rates lead to rapid deletions of sequences in the absence of selection. The frequency of deletion is dependent on the simulated reproductive mechanism. The conditions leading to reversible or irreversible rearrangements were also investigated.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. André C., Levy A., Walbot V. Small repeated sequences and the structure of plant mitochondrial genomes. Trends Genet. 1992 Apr;8(4):128–132. doi: 10.1016/0168-9525(92)90370-J. [DOI] [PubMed] [Google Scholar]
  2. Backer J. S., Birky C. W., Jr The origin of mutant cells: mechanisms by which Saccharomyces cerevisiae produces cells homoplasmic for new mitochondrial mutations. Curr Genet. 1985;9(8):627–640. doi: 10.1007/BF00449815. [DOI] [PubMed] [Google Scholar]
  3. Blanc H., Dujon B. Replicator regions of the yeast mitochondrial DNA responsible for suppressiveness. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3942–3946. doi: 10.1073/pnas.77.7.3942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clayton D. A. Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol. 1991;7:453–478. doi: 10.1146/annurev.cb.07.110191.002321. [DOI] [PubMed] [Google Scholar]
  5. Dale R. M., Wu M., Kiernan M. C. Analysis of four tobacco mitochondrial DNA size classes. Nucleic Acids Res. 1983 Mar 25;11(6):1673–1685. doi: 10.1093/nar/11.6.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Paepe R., Chétrit P., Vitart V., Ambard-Bretteville F., Prat D., Vedel F. Several nuclear genes control both male sterility and mitochondrial protein synthesis in Nicotiana sylvestris protoclones. Mol Gen Genet. 1990 Jul;222(2-3):206–210. doi: 10.1007/BF00633819. [DOI] [PubMed] [Google Scholar]
  7. Eberhard W. G. Evolutionary consequences of intracellular organelle competition. Q Rev Biol. 1980 Sep;55(3):231–249. doi: 10.1086/411855. [DOI] [PubMed] [Google Scholar]
  8. Fauron C. M., Havlik M., Brettell R. I. The mitochondrial genome organization of a maize fertile cmsT revertant line is generated through recombination between two sets of repeats. Genetics. 1990 Feb;124(2):423–428. doi: 10.1093/genetics/124.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hanson M. R. Plant mitochondrial mutations and male sterility. Annu Rev Genet. 1991;25:461–486. doi: 10.1146/annurev.ge.25.120191.002333. [DOI] [PubMed] [Google Scholar]
  10. Levings C. S., 3rd, Brown G. G. Molecular biology of plant mitochondria. Cell. 1989 Jan 27;56(2):171–179. doi: 10.1016/0092-8674(89)90890-8. [DOI] [PubMed] [Google Scholar]
  11. Makaroff C. A., Palmer J. D. Mitochondrial DNA rearrangements and transcriptional alterations in the male-sterile cytoplasm of Ogura radish. Mol Cell Biol. 1988 Apr;8(4):1474–1480. doi: 10.1128/mcb.8.4.1474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Palmer J. D., Herbon L. A. Unicircular structure of the Brassica hirta mitochondrial genome. Curr Genet. 1987;11(6-7):565–570. doi: 10.1007/BF00384620. [DOI] [PubMed] [Google Scholar]
  13. Palmer J. D. Intraspecific variation and multicircularity in Brassica mitochondrial DNAs. Genetics. 1988 Feb;118(2):341–351. doi: 10.1093/genetics/118.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schardl C. L., Pring D. R., Lonsdale D. M. Mitochondrial DNA rearrangements associated with fertile revertants of S-type male-sterile maize. Cell. 1985 Nov;43(1):361–368. doi: 10.1016/0092-8674(85)90041-8. [DOI] [PubMed] [Google Scholar]
  15. Ward B. L., Anderson R. S., Bendich A. J. The mitochondrial genome is large and variable in a family of plants (cucurbitaceae). Cell. 1981 Sep;25(3):793–803. doi: 10.1016/0092-8674(81)90187-2. [DOI] [PubMed] [Google Scholar]
  16. Wolfe K. H., Li W. H., Sharp P. M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9054–9058. doi: 10.1073/pnas.84.24.9054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. de Haas J. M., Hille J., Kors F., van der Meer B., Kool A. J., Folkerts O., Nijkamp H. J. Two potential Petunia hybrida mitochondrial DNA replication origins show structural and in vitro functional homology with the animal mitochondrial DNA heavy and light strand replication origins. Curr Genet. 1991 Dec;20(6):503–513. doi: 10.1007/BF00334779. [DOI] [PubMed] [Google Scholar]
  18. de Zamaroczy M., Faugeron-Fonty G., Bernardi G. Excision sequences in the mitochondrial genome of yeast. Gene. 1983 Mar;21(3):193–202. doi: 10.1016/0378-1119(83)90002-1. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES