Abstract
Cytoplasmically (maternally) inherited bacteria that cause reproductive incompatibility between strains are widespread among insects. In the parasitoid wasp Nasonia, incompatibility results in improper condensation and fragmentation of the paternal chromosomes in fertilized eggs. Some form of genome imprinting may be involved. Because of haplodiploidy, incompatibility results in conversion of (diploid) female eggs into (haploid) males. Experiments show that bacterial density is correlated with compatibility differences between male and female Nasonia. Males from strains with high bacterial numbers are incompatible with females from strains with lower numbers. Temporal changes in compatibility of females after tetracycline treatment are generally correlated with decreases in bacterial levels in eggs. However, complete loss of bacteria in mature eggs precedes conversion of eggs to the ``asymbiont'' compatibility type by 3-4 days. This result is consistent with a critical ``imprinting'' period during egg maturation, when cytoplasmic bacteria determine compatibility. Consequent inheritance of reduced bacterial numbers in F(1) progeny has different effects on compatibility type of subsequent male vs. female progeny. In some cases, partial incompatibility occurs which results in reduced offspring numbers, apparently due to incomplete paternal chromosome elimination resulting in aneuploidy.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barr A. R. Cytoplasmic incompatibility in natural populations of a mosquito, Culex pipiens L. Nature. 1980 Jan 3;283(5742):71–72. doi: 10.1038/283071a0. [DOI] [PubMed] [Google Scholar]
- Beukeboom L. W., Werren J. H. Deletion analysis of the selfish B chromosome, Paternal Sex Ratio (PSR), in the parasitic wasp Nasonia vitripennis. Genetics. 1993 Mar;133(3):637–648. doi: 10.1093/genetics/133.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breeuwer J. A., Stouthamer R., Barns S. M., Pelletier D. A., Weisburg W. G., Werren J. H. Phylogeny of cytoplasmic incompatibility micro-organisms in the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences. Insect Mol Biol. 1992;1(1):25–36. doi: 10.1111/j.1365-2583.1993.tb00074.x. [DOI] [PubMed] [Google Scholar]
- Breeuwer J. A., Werren J. H. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature. 1990 Aug 9;346(6284):558–560. doi: 10.1038/346558a0. [DOI] [PubMed] [Google Scholar]
- Hoffmann A. A., Turelli M., Harshman L. G. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics. 1990 Dec;126(4):933–948. doi: 10.1093/genetics/126.4.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffmann A. A., Turelli M. Unidirectional incompatibility in Drosophila simulans: inheritance, geographic variation and fitness effects. Genetics. 1988 Jun;119(2):435–444. doi: 10.1093/genetics/119.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jablonka E., Lamb M. J. The inheritance of acquired epigenetic variations. J Theor Biol. 1989 Jul 10;139(1):69–83. doi: 10.1016/s0022-5193(89)80058-x. [DOI] [PubMed] [Google Scholar]
- Montchamp-Moreau C., Ferveur J. F., Jacques M. Geographic distribution and inheritance of three cytoplasmic incompatibility types in Drosophila simulans. Genetics. 1991 Oct;129(2):399–407. doi: 10.1093/genetics/129.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Neill S. L., Giordano R., Colbert A. M., Karr T. L., Robertson H. M. 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2699–2702. doi: 10.1073/pnas.89.7.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rousset F., Vautrin D., Solignac M. Molecular identification of Wolbachia, the agent of cytoplasmic incompatibility in Drosophila simulans, and variability in relation with host mitochondrial types. Proc Biol Sci. 1992 Mar 23;247(1320):163–168. doi: 10.1098/rspb.1992.0023. [DOI] [PubMed] [Google Scholar]
- Ryan S. L., Saul G. B., 2nd, Conner G. W. Aberrant segregation of R-locus genes in male progeny from incompatible crosses in Mormoniella. J Hered. 1985 Jan-Feb;76(1):21–26. doi: 10.1093/oxfordjournals.jhered.a110011. [DOI] [PubMed] [Google Scholar]
- Singh K. R., Curtis C. F., Krishnamurthy B. S. Partial loss of cytoplasmic incompatibility with age in males of Culex fatigans. Ann Trop Med Parasitol. 1976 Dec;70(4):463–466. doi: 10.1080/00034983.1976.11687148. [DOI] [PubMed] [Google Scholar]
- Subbarao S. K., Krishnamurthy B. S., Curtis C. F., Adak T., Chandrahas R. K. Segregation of cytoplasmic incompatibility properties in Culex pipiens fatigans. Genetics. 1977 Oct;87(2):381–390. doi: 10.1093/genetics/87.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wade M. J., Stevens L. Microorganism mediated reproductive isolation in flour beetles (genus Tribolium). Science. 1985 Feb 1;227(4686):527–528. doi: 10.1126/science.3966160. [DOI] [PubMed] [Google Scholar]
- Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright J. D., Barr A. R. The ultrastructure and symbiotic relationships of Wolbachia of mosquitoes of the Aedes scutellaris group. J Ultrastruct Res. 1980 Jul;72(1):52–64. doi: 10.1016/s0022-5320(80)90135-5. [DOI] [PubMed] [Google Scholar]